AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.363 0.554 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.602
Method: Least Squares F-statistic: 12.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000119
Time: 04:41:00 Log-Likelihood: -100.84
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 190.9842 390.166 0.489 0.630 -625.643 1007.612
C(dose)[T.1] 165.9264 629.088 0.264 0.795 -1150.771 1482.624
expression -12.8904 36.767 -0.351 0.730 -89.844 64.063
expression:C(dose)[T.1] -10.8167 59.602 -0.181 0.858 -135.565 113.932
Omnibus: 0.027 Durbin-Watson: 1.861
Prob(Omnibus): 0.987 Jarque-Bera (JB): 0.225
Skew: 0.045 Prob(JB): 0.894
Kurtosis: 2.524 Cond. No. 1.86e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.655
Model: OLS Adj. R-squared: 0.621
Method: Least Squares F-statistic: 19.01
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.37e-05
Time: 04:41:00 Log-Likelihood: -100.86
No. Observations: 23 AIC: 207.7
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 234.6577 299.594 0.783 0.443 -390.285 859.600
C(dose)[T.1] 51.7713 9.072 5.707 0.000 32.848 70.694
expression -17.0064 28.229 -0.602 0.554 -75.892 41.879
Omnibus: 0.047 Durbin-Watson: 1.848
Prob(Omnibus): 0.977 Jarque-Bera (JB): 0.235
Skew: 0.077 Prob(JB): 0.889
Kurtosis: 2.530 Cond. No. 737.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:41:00 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.094
Model: OLS Adj. R-squared: 0.051
Method: Least Squares F-statistic: 2.179
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.155
Time: 04:41:00 Log-Likelihood: -111.97
No. Observations: 23 AIC: 227.9
Df Residuals: 21 BIC: 230.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 747.1657 452.214 1.652 0.113 -193.264 1687.596
expression -63.1656 42.791 -1.476 0.155 -152.155 25.824
Omnibus: 4.608 Durbin-Watson: 2.119
Prob(Omnibus): 0.100 Jarque-Bera (JB): 1.720
Skew: 0.238 Prob(JB): 0.423
Kurtosis: 1.748 Cond. No. 702.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.135 0.720 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.501
Model: OLS Adj. R-squared: 0.365
Method: Least Squares F-statistic: 3.677
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0470
Time: 04:41:00 Log-Likelihood: -70.091
No. Observations: 15 AIC: 148.2
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -269.3349 337.893 -0.797 0.442 -1013.032 474.362
C(dose)[T.1] 506.8206 460.326 1.101 0.294 -506.351 1519.992
expression 36.6635 36.765 0.997 0.340 -44.257 117.584
expression:C(dose)[T.1] -49.1456 48.917 -1.005 0.337 -156.811 58.520
Omnibus: 1.244 Durbin-Watson: 0.964
Prob(Omnibus): 0.537 Jarque-Bera (JB): 0.962
Skew: -0.561 Prob(JB): 0.618
Kurtosis: 2.471 Cond. No. 772.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.007
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0262
Time: 04:41:00 Log-Likelihood: -70.749
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.3361 223.137 -0.064 0.950 -500.509 471.837
C(dose)[T.1] 44.7678 19.765 2.265 0.043 1.703 87.833
expression 8.9017 24.261 0.367 0.720 -43.959 61.762
Omnibus: 3.121 Durbin-Watson: 0.738
Prob(Omnibus): 0.210 Jarque-Bera (JB): 2.044
Skew: -0.895 Prob(JB): 0.360
Kurtosis: 2.745 Cond. No. 274.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:41:01 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.222
Model: OLS Adj. R-squared: 0.162
Method: Least Squares F-statistic: 3.706
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0764
Time: 04:41:01 Log-Likelihood: -73.419
No. Observations: 15 AIC: 150.8
Df Residuals: 13 BIC: 152.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -307.5830 208.613 -1.474 0.164 -758.264 143.098
expression 42.4576 22.054 1.925 0.076 -5.186 90.102
Omnibus: 0.151 Durbin-Watson: 1.122
Prob(Omnibus): 0.927 Jarque-Bera (JB): 0.333
Skew: 0.167 Prob(JB): 0.847
Kurtosis: 2.350 Cond. No. 223.