AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 0.005 | 0.943 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.651 |
| Model: | OLS | Adj. R-squared: | 0.596 |
| Method: | Least Squares | F-statistic: | 11.80 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.000137 |
| Time: | 20:12:31 | Log-Likelihood: | -101.01 |
| No. Observations: | 23 | AIC: | 210.0 |
| Df Residuals: | 19 | BIC: | 214.6 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 58.4671 | 52.441 | 1.115 | 0.279 | -51.293 168.227 |
| C(dose)[T.1] | 21.2095 | 110.106 | 0.193 | 0.849 | -209.246 251.665 |
| expression | -0.7563 | 9.247 | -0.082 | 0.936 | -20.111 18.598 |
| expression:C(dose)[T.1] | 5.4874 | 18.826 | 0.291 | 0.774 | -33.917 44.892 |
| Omnibus: | 0.272 | Durbin-Watson: | 1.901 |
| Prob(Omnibus): | 0.873 | Jarque-Bera (JB): | 0.454 |
| Skew: | 0.065 | Prob(JB): | 0.797 |
| Kurtosis: | 2.324 | Cond. No. | 172. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.649 |
| Model: | OLS | Adj. R-squared: | 0.614 |
| Method: | Least Squares | F-statistic: | 18.50 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 2.83e-05 |
| Time: | 20:12:31 | Log-Likelihood: | -101.06 |
| No. Observations: | 23 | AIC: | 208.1 |
| Df Residuals: | 20 | BIC: | 211.5 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 51.0122 | 44.721 | 1.141 | 0.267 | -42.275 144.299 |
| C(dose)[T.1] | 53.1899 | 9.003 | 5.908 | 0.000 | 34.410 71.970 |
| expression | 0.5676 | 7.868 | 0.072 | 0.943 | -15.846 16.981 |
| Omnibus: | 0.329 | Durbin-Watson: | 1.916 |
| Prob(Omnibus): | 0.848 | Jarque-Bera (JB): | 0.489 |
| Skew: | 0.054 | Prob(JB): | 0.783 |
| Kurtosis: | 2.294 | Cond. No. | 61.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.649 |
| Model: | OLS | Adj. R-squared: | 0.632 |
| Method: | Least Squares | F-statistic: | 38.84 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 3.51e-06 |
| Time: | 20:12:31 | Log-Likelihood: | -101.06 |
| No. Observations: | 23 | AIC: | 206.1 |
| Df Residuals: | 21 | BIC: | 208.4 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
| C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
| Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
| Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
| Skew: | 0.060 | Prob(JB): | 0.785 |
| Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.037 |
| Model: | OLS | Adj. R-squared: | -0.009 |
| Method: | Least Squares | F-statistic: | 0.8032 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.380 |
| Time: | 20:12:31 | Log-Likelihood: | -112.67 |
| No. Observations: | 23 | AIC: | 229.3 |
| Df Residuals: | 21 | BIC: | 231.6 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 15.8029 | 71.666 | 0.221 | 0.828 | -133.235 164.841 |
| expression | 11.1055 | 12.391 | 0.896 | 0.380 | -14.664 36.875 |
| Omnibus: | 1.933 | Durbin-Watson: | 2.688 |
| Prob(Omnibus): | 0.380 | Jarque-Bera (JB): | 1.125 |
| Skew: | 0.180 | Prob(JB): | 0.570 |
| Kurtosis: | 1.978 | Cond. No. | 60.3 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 3.423 | 0.089 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.575 |
| Model: | OLS | Adj. R-squared: | 0.459 |
| Method: | Least Squares | F-statistic: | 4.956 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.0205 |
| Time: | 20:12:31 | Log-Likelihood: | -68.887 |
| No. Observations: | 15 | AIC: | 145.8 |
| Df Residuals: | 11 | BIC: | 148.6 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -148.3659 | 197.066 | -0.753 | 0.467 | -582.104 285.373 |
| C(dose)[T.1] | -35.9167 | 288.021 | -0.125 | 0.903 | -669.847 598.014 |
| expression | 29.1113 | 26.547 | 1.097 | 0.296 | -29.317 87.540 |
| expression:C(dose)[T.1] | 12.0145 | 39.078 | 0.307 | 0.764 | -73.995 98.024 |
| Omnibus: | 2.145 | Durbin-Watson: | 0.770 |
| Prob(Omnibus): | 0.342 | Jarque-Bera (JB): | 1.657 |
| Skew: | -0.735 | Prob(JB): | 0.437 |
| Kurtosis: | 2.298 | Cond. No. | 392. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.571 |
| Model: | OLS | Adj. R-squared: | 0.500 |
| Method: | Least Squares | F-statistic: | 7.990 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.00622 |
| Time: | 20:12:31 | Log-Likelihood: | -68.951 |
| No. Observations: | 15 | AIC: | 143.9 |
| Df Residuals: | 12 | BIC: | 146.0 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -189.4665 | 139.221 | -1.361 | 0.199 | -492.803 113.870 |
| C(dose)[T.1] | 52.5231 | 13.999 | 3.752 | 0.003 | 22.021 83.025 |
| expression | 34.6558 | 18.731 | 1.850 | 0.089 | -6.156 75.468 |
| Omnibus: | 2.298 | Durbin-Watson: | 0.845 |
| Prob(Omnibus): | 0.317 | Jarque-Bera (JB): | 1.756 |
| Skew: | -0.726 | Prob(JB): | 0.416 |
| Kurtosis: | 2.163 | Cond. No. | 151. |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.449 |
| Model: | OLS | Adj. R-squared: | 0.406 |
| Method: | Least Squares | F-statistic: | 10.58 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.00629 |
| Time: | 20:12:31 | Log-Likelihood: | -70.833 |
| No. Observations: | 15 | AIC: | 145.7 |
| Df Residuals: | 13 | BIC: | 147.1 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
| C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
| Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
| Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
| Skew: | -0.843 | Prob(JB): | 0.393 |
| Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.068 |
| Model: | OLS | Adj. R-squared: | -0.004 |
| Method: | Least Squares | F-statistic: | 0.9490 |
| Date: | Sun, 09 Nov 2025 | Prob (F-statistic): | 0.348 |
| Time: | 20:12:31 | Log-Likelihood: | -74.772 |
| No. Observations: | 15 | AIC: | 153.5 |
| Df Residuals: | 13 | BIC: | 155.0 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -95.0088 | 193.924 | -0.490 | 0.632 | -513.957 323.939 |
| expression | 25.6298 | 26.309 | 0.974 | 0.348 | -31.208 82.467 |
| Omnibus: | 0.926 | Durbin-Watson: | 1.811 |
| Prob(Omnibus): | 0.629 | Jarque-Bera (JB): | 0.713 |
| Skew: | 0.151 | Prob(JB): | 0.700 |
| Kurtosis: | 1.975 | Cond. No. | 148. |