AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.489 | 0.237 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.630 |
Method: | Least Squares | F-statistic: | 13.47 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.03e-05 |
Time: | 04:08:18 | Log-Likelihood: | -99.995 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 19 | BIC: | 212.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -349.7386 | 300.758 | -1.163 | 0.259 | -979.232 279.755 |
C(dose)[T.1] | 368.3880 | 517.600 | 0.712 | 0.485 | -714.961 1451.737 |
expression | 44.1748 | 32.884 | 1.343 | 0.195 | -24.652 113.001 |
expression:C(dose)[T.1] | -34.9025 | 54.877 | -0.636 | 0.532 | -149.762 79.957 |
Omnibus: | 0.034 | Durbin-Watson: | 1.840 |
Prob(Omnibus): | 0.983 | Jarque-Bera (JB): | 0.223 |
Skew: | 0.064 | Prob(JB): | 0.894 |
Kurtosis: | 2.535 | Cond. No. | 1.40e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.673 |
Model: | OLS | Adj. R-squared: | 0.641 |
Method: | Least Squares | F-statistic: | 20.62 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.38e-05 |
Time: | 04:08:18 | Log-Likelihood: | -100.24 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 20 | BIC: | 209.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -235.1388 | 237.196 | -0.991 | 0.333 | -729.920 259.643 |
C(dose)[T.1] | 39.3190 | 14.267 | 2.756 | 0.012 | 9.558 69.080 |
expression | 31.6424 | 25.931 | 1.220 | 0.237 | -22.449 85.734 |
Omnibus: | 0.083 | Durbin-Watson: | 2.035 |
Prob(Omnibus): | 0.959 | Jarque-Bera (JB): | 0.258 |
Skew: | 0.112 | Prob(JB): | 0.879 |
Kurtosis: | 2.532 | Cond. No. | 533. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:08:18 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.549 |
Model: | OLS | Adj. R-squared: | 0.528 |
Method: | Least Squares | F-statistic: | 25.60 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 5.21e-05 |
Time: | 04:08:18 | Log-Likelihood: | -103.94 |
No. Observations: | 23 | AIC: | 211.9 |
Df Residuals: | 21 | BIC: | 214.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -754.7128 | 164.996 | -4.574 | 0.000 | -1097.841 -411.585 |
expression | 89.1851 | 17.627 | 5.059 | 0.000 | 52.527 125.843 |
Omnibus: | 0.267 | Durbin-Watson: | 2.175 |
Prob(Omnibus): | 0.875 | Jarque-Bera (JB): | 0.382 |
Skew: | 0.216 | Prob(JB): | 0.826 |
Kurtosis: | 2.539 | Cond. No. | 322. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.009 | 0.926 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.299 |
Method: | Least Squares | F-statistic: | 2.991 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0774 |
Time: | 04:08:18 | Log-Likelihood: | -70.826 |
No. Observations: | 15 | AIC: | 149.7 |
Df Residuals: | 11 | BIC: | 152.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 94.2539 | 264.284 | 0.357 | 0.728 | -487.432 675.940 |
C(dose)[T.1] | 19.4601 | 656.684 | 0.030 | 0.977 | -1425.891 1464.811 |
expression | -3.0716 | 30.231 | -0.102 | 0.921 | -69.609 63.466 |
expression:C(dose)[T.1] | 3.4022 | 74.645 | 0.046 | 0.964 | -160.891 167.695 |
Omnibus: | 2.752 | Durbin-Watson: | 0.820 |
Prob(Omnibus): | 0.253 | Jarque-Bera (JB): | 1.891 |
Skew: | -0.849 | Prob(JB): | 0.389 |
Kurtosis: | 2.626 | Cond. No. | 841. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.893 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 04:08:18 | Log-Likelihood: | -70.827 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 89.3806 | 231.422 | 0.386 | 0.706 | -414.845 593.606 |
C(dose)[T.1] | 49.3809 | 15.853 | 3.115 | 0.009 | 14.840 83.922 |
expression | -2.5136 | 26.466 | -0.095 | 0.926 | -60.179 55.151 |
Omnibus: | 2.902 | Durbin-Watson: | 0.815 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 1.948 |
Skew: | -0.868 | Prob(JB): | 0.378 |
Kurtosis: | 2.681 | Cond. No. | 263. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:08:18 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.073 |
Method: | Least Squares | F-statistic: | 0.04999 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.827 |
Time: | 04:08:18 | Log-Likelihood: | -75.271 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 27.0994 | 297.893 | 0.091 | 0.929 | -616.460 670.659 |
expression | 7.5883 | 33.938 | 0.224 | 0.827 | -65.731 80.908 |
Omnibus: | 0.659 | Durbin-Watson: | 1.624 |
Prob(Omnibus): | 0.719 | Jarque-Bera (JB): | 0.603 |
Skew: | 0.060 | Prob(JB): | 0.740 |
Kurtosis: | 2.025 | Cond. No. | 261. |