AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.212 | 0.650 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.602 |
Method: | Least Squares | F-statistic: | 12.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000117 |
Time: | 04:45:05 | Log-Likelihood: | -100.81 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 46.4570 | 118.345 | 0.393 | 0.699 | -201.241 294.155 |
C(dose)[T.1] | -35.2085 | 191.391 | -0.184 | 0.856 | -435.794 365.377 |
expression | 1.1240 | 17.138 | 0.066 | 0.948 | -34.747 36.995 |
expression:C(dose)[T.1] | 12.5890 | 27.417 | 0.459 | 0.651 | -44.795 69.973 |
Omnibus: | 0.526 | Durbin-Watson: | 2.039 |
Prob(Omnibus): | 0.769 | Jarque-Bera (JB): | 0.602 |
Skew: | 0.111 | Prob(JB): | 0.740 |
Kurtosis: | 2.239 | Cond. No. | 378. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 18.80 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.55e-05 |
Time: | 04:45:05 | Log-Likelihood: | -100.94 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 12.5351 | 90.611 | 0.138 | 0.891 | -176.477 201.547 |
C(dose)[T.1] | 52.5738 | 8.879 | 5.921 | 0.000 | 34.052 71.096 |
expression | 6.0431 | 13.111 | 0.461 | 0.650 | -21.305 33.391 |
Omnibus: | 0.281 | Durbin-Watson: | 1.959 |
Prob(Omnibus): | 0.869 | Jarque-Bera (JB): | 0.461 |
Skew: | 0.117 | Prob(JB): | 0.794 |
Kurtosis: | 2.347 | Cond. No. | 148. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:45:05 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.044 |
Model: | OLS | Adj. R-squared: | -0.001 |
Method: | Least Squares | F-statistic: | 0.9681 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.336 |
Time: | 04:45:05 | Log-Likelihood: | -112.59 |
No. Observations: | 23 | AIC: | 229.2 |
Df Residuals: | 21 | BIC: | 231.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -63.0329 | 145.253 | -0.434 | 0.669 | -365.104 239.038 |
expression | 20.5207 | 20.856 | 0.984 | 0.336 | -22.851 63.893 |
Omnibus: | 2.746 | Durbin-Watson: | 2.479 |
Prob(Omnibus): | 0.253 | Jarque-Bera (JB): | 1.394 |
Skew: | 0.249 | Prob(JB): | 0.498 |
Kurtosis: | 1.901 | Cond. No. | 146. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.145 | 0.710 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.554 |
Model: | OLS | Adj. R-squared: | 0.432 |
Method: | Least Squares | F-statistic: | 4.550 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0263 |
Time: | 04:45:05 | Log-Likelihood: | -69.249 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 11 | BIC: | 149.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -224.8575 | 249.219 | -0.902 | 0.386 | -773.385 323.670 |
C(dose)[T.1] | 489.8643 | 283.575 | 1.727 | 0.112 | -134.280 1114.009 |
expression | 43.6314 | 37.168 | 1.174 | 0.265 | -38.174 125.437 |
expression:C(dose)[T.1] | -65.9322 | 42.339 | -1.557 | 0.148 | -159.120 27.255 |
Omnibus: | 0.993 | Durbin-Watson: | 0.976 |
Prob(Omnibus): | 0.609 | Jarque-Bera (JB): | 0.880 |
Skew: | -0.479 | Prob(JB): | 0.644 |
Kurtosis: | 2.298 | Cond. No. | 393. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.455 |
Model: | OLS | Adj. R-squared: | 0.365 |
Method: | Least Squares | F-statistic: | 5.017 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0261 |
Time: | 04:45:05 | Log-Likelihood: | -70.743 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 115.5145 | 126.643 | 0.912 | 0.380 | -160.417 391.446 |
C(dose)[T.1] | 48.8709 | 15.668 | 3.119 | 0.009 | 14.732 83.010 |
expression | -7.1781 | 18.828 | -0.381 | 0.710 | -48.200 33.844 |
Omnibus: | 2.752 | Durbin-Watson: | 0.883 |
Prob(Omnibus): | 0.253 | Jarque-Bera (JB): | 1.899 |
Skew: | -0.850 | Prob(JB): | 0.387 |
Kurtosis: | 2.616 | Cond. No. | 111. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:45:05 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.062 |
Method: | Least Squares | F-statistic: | 0.1823 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.676 |
Time: | 04:45:05 | Log-Likelihood: | -75.196 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 162.9377 | 162.544 | 1.002 | 0.334 | -188.218 514.094 |
expression | -10.3780 | 24.305 | -0.427 | 0.676 | -62.886 42.130 |
Omnibus: | 0.100 | Durbin-Watson: | 1.760 |
Prob(Omnibus): | 0.951 | Jarque-Bera (JB): | 0.319 |
Skew: | -0.082 | Prob(JB): | 0.852 |
Kurtosis: | 2.304 | Cond. No. | 110. |