AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.422 0.523 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.709
Model: OLS Adj. R-squared: 0.663
Method: Least Squares F-statistic: 15.43
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.50e-05
Time: 21:49:26 Log-Likelihood: -98.909
No. Observations: 23 AIC: 205.8
Df Residuals: 19 BIC: 210.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -23.6350 290.549 -0.081 0.936 -631.761 584.491
C(dose)[T.1] 1210.9925 622.893 1.944 0.067 -92.737 2514.722
expression 7.1107 26.536 0.268 0.792 -48.429 62.651
expression:C(dose)[T.1] -104.3780 56.277 -1.855 0.079 -222.167 13.411
Omnibus: 0.590 Durbin-Watson: 1.528
Prob(Omnibus): 0.744 Jarque-Bera (JB): 0.674
Skew: 0.286 Prob(JB): 0.714
Kurtosis: 2.386 Cond. No. 1.98e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 19.10
Date: Tue, 28 Jan 2025 Prob (F-statistic): 2.30e-05
Time: 21:49:26 Log-Likelihood: -100.82
No. Observations: 23 AIC: 207.6
Df Residuals: 20 BIC: 211.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 230.4129 271.417 0.849 0.406 -335.752 796.578
C(dose)[T.1] 55.8194 9.483 5.886 0.000 36.037 75.601
expression -16.0957 24.787 -0.649 0.523 -67.801 35.609
Omnibus: 1.276 Durbin-Watson: 1.855
Prob(Omnibus): 0.528 Jarque-Bera (JB): 0.872
Skew: 0.052 Prob(JB): 0.647
Kurtosis: 2.052 Cond. No. 697.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Tue, 28 Jan 2025 Prob (F-statistic): 3.51e-06
Time: 21:49:26 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.061
Model: OLS Adj. R-squared: 0.016
Method: Least Squares F-statistic: 1.362
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.256
Time: 21:49:26 Log-Likelihood: -112.38
No. Observations: 23 AIC: 228.8
Df Residuals: 21 BIC: 231.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -391.0215 403.346 -0.969 0.343 -1229.825 447.782
expression 42.7128 36.592 1.167 0.256 -33.385 118.811
Omnibus: 1.979 Durbin-Watson: 2.270
Prob(Omnibus): 0.372 Jarque-Bera (JB): 1.374
Skew: 0.367 Prob(JB): 0.503
Kurtosis: 2.054 Cond. No. 641.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.526 0.055 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.602
Model: OLS Adj. R-squared: 0.493
Method: Least Squares F-statistic: 5.536
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0146
Time: 21:49:26 Log-Likelihood: -68.398
No. Observations: 15 AIC: 144.8
Df Residuals: 11 BIC: 147.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 470.1090 291.731 1.611 0.135 -171.986 1112.204
C(dose)[T.1] 138.0794 435.610 0.317 0.757 -820.693 1096.851
expression -40.2246 29.124 -1.381 0.195 -104.326 23.876
expression:C(dose)[T.1] -9.8853 43.986 -0.225 0.826 -106.697 86.926
Omnibus: 1.372 Durbin-Watson: 0.961
Prob(Omnibus): 0.504 Jarque-Bera (JB): 1.137
Skew: -0.560 Prob(JB): 0.567
Kurtosis: 2.250 Cond. No. 809.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.600
Model: OLS Adj. R-squared: 0.533
Method: Least Squares F-statistic: 8.990
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00411
Time: 21:49:26 Log-Likelihood: -68.433
No. Observations: 15 AIC: 142.9
Df Residuals: 12 BIC: 145.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 513.4931 209.895 2.446 0.031 56.171 970.815
C(dose)[T.1] 40.2361 14.058 2.862 0.014 9.607 70.866
expression -44.5584 20.944 -2.127 0.055 -90.192 1.075
Omnibus: 1.487 Durbin-Watson: 0.993
Prob(Omnibus): 0.475 Jarque-Bera (JB): 1.212
Skew: -0.569 Prob(JB): 0.546
Kurtosis: 2.198 Cond. No. 314.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.00629
Time: 21:49:26 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.327
Model: OLS Adj. R-squared: 0.275
Method: Least Squares F-statistic: 6.302
Date: Tue, 28 Jan 2025 Prob (F-statistic): 0.0261
Time: 21:49:26 Log-Likelihood: -72.336
No. Observations: 15 AIC: 148.7
Df Residuals: 13 BIC: 150.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 712.8137 246.773 2.889 0.013 179.694 1245.933
expression -62.5177 24.903 -2.510 0.026 -116.318 -8.717
Omnibus: 2.271 Durbin-Watson: 1.842
Prob(Omnibus): 0.321 Jarque-Bera (JB): 1.155
Skew: 0.305 Prob(JB): 0.561
Kurtosis: 1.785 Cond. No. 296.