AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.422 | 0.523 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.709 |
Model: | OLS | Adj. R-squared: | 0.663 |
Method: | Least Squares | F-statistic: | 15.43 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.50e-05 |
Time: | 21:49:26 | Log-Likelihood: | -98.909 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 19 | BIC: | 210.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -23.6350 | 290.549 | -0.081 | 0.936 | -631.761 584.491 |
C(dose)[T.1] | 1210.9925 | 622.893 | 1.944 | 0.067 | -92.737 2514.722 |
expression | 7.1107 | 26.536 | 0.268 | 0.792 | -48.429 62.651 |
expression:C(dose)[T.1] | -104.3780 | 56.277 | -1.855 | 0.079 | -222.167 13.411 |
Omnibus: | 0.590 | Durbin-Watson: | 1.528 |
Prob(Omnibus): | 0.744 | Jarque-Bera (JB): | 0.674 |
Skew: | 0.286 | Prob(JB): | 0.714 |
Kurtosis: | 2.386 | Cond. No. | 1.98e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.10 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 2.30e-05 |
Time: | 21:49:26 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 230.4129 | 271.417 | 0.849 | 0.406 | -335.752 796.578 |
C(dose)[T.1] | 55.8194 | 9.483 | 5.886 | 0.000 | 36.037 75.601 |
expression | -16.0957 | 24.787 | -0.649 | 0.523 | -67.801 35.609 |
Omnibus: | 1.276 | Durbin-Watson: | 1.855 |
Prob(Omnibus): | 0.528 | Jarque-Bera (JB): | 0.872 |
Skew: | 0.052 | Prob(JB): | 0.647 |
Kurtosis: | 2.052 | Cond. No. | 697. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 21:49:26 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.061 |
Model: | OLS | Adj. R-squared: | 0.016 |
Method: | Least Squares | F-statistic: | 1.362 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.256 |
Time: | 21:49:26 | Log-Likelihood: | -112.38 |
No. Observations: | 23 | AIC: | 228.8 |
Df Residuals: | 21 | BIC: | 231.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -391.0215 | 403.346 | -0.969 | 0.343 | -1229.825 447.782 |
expression | 42.7128 | 36.592 | 1.167 | 0.256 | -33.385 118.811 |
Omnibus: | 1.979 | Durbin-Watson: | 2.270 |
Prob(Omnibus): | 0.372 | Jarque-Bera (JB): | 1.374 |
Skew: | 0.367 | Prob(JB): | 0.503 |
Kurtosis: | 2.054 | Cond. No. | 641. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.526 | 0.055 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.602 |
Model: | OLS | Adj. R-squared: | 0.493 |
Method: | Least Squares | F-statistic: | 5.536 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0146 |
Time: | 21:49:26 | Log-Likelihood: | -68.398 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 11 | BIC: | 147.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 470.1090 | 291.731 | 1.611 | 0.135 | -171.986 1112.204 |
C(dose)[T.1] | 138.0794 | 435.610 | 0.317 | 0.757 | -820.693 1096.851 |
expression | -40.2246 | 29.124 | -1.381 | 0.195 | -104.326 23.876 |
expression:C(dose)[T.1] | -9.8853 | 43.986 | -0.225 | 0.826 | -106.697 86.926 |
Omnibus: | 1.372 | Durbin-Watson: | 0.961 |
Prob(Omnibus): | 0.504 | Jarque-Bera (JB): | 1.137 |
Skew: | -0.560 | Prob(JB): | 0.567 |
Kurtosis: | 2.250 | Cond. No. | 809. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.600 |
Model: | OLS | Adj. R-squared: | 0.533 |
Method: | Least Squares | F-statistic: | 8.990 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00411 |
Time: | 21:49:26 | Log-Likelihood: | -68.433 |
No. Observations: | 15 | AIC: | 142.9 |
Df Residuals: | 12 | BIC: | 145.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 513.4931 | 209.895 | 2.446 | 0.031 | 56.171 970.815 |
C(dose)[T.1] | 40.2361 | 14.058 | 2.862 | 0.014 | 9.607 70.866 |
expression | -44.5584 | 20.944 | -2.127 | 0.055 | -90.192 1.075 |
Omnibus: | 1.487 | Durbin-Watson: | 0.993 |
Prob(Omnibus): | 0.475 | Jarque-Bera (JB): | 1.212 |
Skew: | -0.569 | Prob(JB): | 0.546 |
Kurtosis: | 2.198 | Cond. No. | 314. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.00629 |
Time: | 21:49:26 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.327 |
Model: | OLS | Adj. R-squared: | 0.275 |
Method: | Least Squares | F-statistic: | 6.302 |
Date: | Tue, 28 Jan 2025 | Prob (F-statistic): | 0.0261 |
Time: | 21:49:26 | Log-Likelihood: | -72.336 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 13 | BIC: | 150.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 712.8137 | 246.773 | 2.889 | 0.013 | 179.694 1245.933 |
expression | -62.5177 | 24.903 | -2.510 | 0.026 | -116.318 -8.717 |
Omnibus: | 2.271 | Durbin-Watson: | 1.842 |
Prob(Omnibus): | 0.321 | Jarque-Bera (JB): | 1.155 |
Skew: | 0.305 | Prob(JB): | 0.561 |
Kurtosis: | 1.785 | Cond. No. | 296. |