AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.702 0.207 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.750
Model: OLS Adj. R-squared: 0.710
Method: Least Squares F-statistic: 18.95
Date: Thu, 21 Nov 2024 Prob (F-statistic): 6.17e-06
Time: 04:18:28 Log-Likelihood: -97.184
No. Observations: 23 AIC: 202.4
Df Residuals: 19 BIC: 206.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 69.9087 42.035 1.663 0.113 -18.071 157.888
C(dose)[T.1] -97.7061 65.162 -1.499 0.150 -234.093 38.680
expression -2.9250 7.770 -0.376 0.711 -19.187 13.337
expression:C(dose)[T.1] 28.7972 12.242 2.352 0.030 3.175 54.420
Omnibus: 1.048 Durbin-Watson: 1.710
Prob(Omnibus): 0.592 Jarque-Bera (JB): 0.984
Skew: 0.348 Prob(JB): 0.611
Kurtosis: 2.264 Cond. No. 118.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 20.92
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.25e-05
Time: 04:18:28 Log-Likelihood: -100.12
No. Observations: 23 AIC: 206.2
Df Residuals: 20 BIC: 209.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 7.6439 36.166 0.211 0.835 -67.798 83.086
C(dose)[T.1] 54.5209 8.468 6.439 0.000 36.857 72.184
expression 8.6750 6.650 1.305 0.207 -5.197 22.547
Omnibus: 2.328 Durbin-Watson: 1.714
Prob(Omnibus): 0.312 Jarque-Bera (JB): 1.236
Skew: 0.193 Prob(JB): 0.539
Kurtosis: 1.932 Cond. No. 47.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:18:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.006
Model: OLS Adj. R-squared: -0.041
Method: Least Squares F-statistic: 0.1305
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.721
Time: 04:18:28 Log-Likelihood: -113.03
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.0485 60.403 0.961 0.347 -67.567 183.664
expression 4.0866 11.311 0.361 0.721 -19.435 27.608
Omnibus: 3.780 Durbin-Watson: 2.534
Prob(Omnibus): 0.151 Jarque-Bera (JB): 1.552
Skew: 0.214 Prob(JB): 0.460
Kurtosis: 1.802 Cond. No. 46.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.411 0.146 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.542
Model: OLS Adj. R-squared: 0.417
Method: Least Squares F-statistic: 4.338
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0301
Time: 04:18:28 Log-Likelihood: -69.444
No. Observations: 15 AIC: 146.9
Df Residuals: 11 BIC: 149.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -34.5434 139.068 -0.248 0.808 -340.630 271.543
C(dose)[T.1] 18.8541 172.517 0.109 0.915 -360.854 398.562
expression 18.1584 24.687 0.736 0.477 -36.178 72.495
expression:C(dose)[T.1] 4.5628 30.228 0.151 0.883 -61.968 71.093
Omnibus: 2.956 Durbin-Watson: 0.629
Prob(Omnibus): 0.228 Jarque-Bera (JB): 2.187
Skew: -0.892 Prob(JB): 0.335
Kurtosis: 2.438 Cond. No. 196.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.541
Model: OLS Adj. R-squared: 0.465
Method: Least Squares F-statistic: 7.072
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00935
Time: 04:18:28 Log-Likelihood: -69.460
No. Observations: 15 AIC: 144.9
Df Residuals: 12 BIC: 147.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -51.6348 77.387 -0.667 0.517 -220.246 116.976
C(dose)[T.1] 44.7930 14.640 3.060 0.010 12.896 76.690
expression 21.2019 13.653 1.553 0.146 -8.546 50.950
Omnibus: 2.753 Durbin-Watson: 0.621
Prob(Omnibus): 0.252 Jarque-Bera (JB): 2.062
Skew: -0.856 Prob(JB): 0.357
Kurtosis: 2.391 Cond. No. 64.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:18:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.183
Model: OLS Adj. R-squared: 0.120
Method: Least Squares F-statistic: 2.911
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.112
Time: 04:18:28 Log-Likelihood: -73.785
No. Observations: 15 AIC: 151.6
Df Residuals: 13 BIC: 153.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -74.0806 98.753 -0.750 0.467 -287.424 139.263
expression 29.2933 17.170 1.706 0.112 -7.801 66.388
Omnibus: 4.373 Durbin-Watson: 1.519
Prob(Omnibus): 0.112 Jarque-Bera (JB): 1.315
Skew: 0.004 Prob(JB): 0.518
Kurtosis: 1.550 Cond. No. 63.7