AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.107 0.747 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.722
Model: OLS Adj. R-squared: 0.678
Method: Least Squares F-statistic: 16.43
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.65e-05
Time: 05:24:57 Log-Likelihood: -98.393
No. Observations: 23 AIC: 204.8
Df Residuals: 19 BIC: 209.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 73.6638 39.153 1.881 0.075 -8.285 155.612
C(dose)[T.1] -180.9683 106.593 -1.698 0.106 -404.070 42.134
expression -3.6130 7.198 -0.502 0.621 -18.678 11.452
expression:C(dose)[T.1] 41.7933 19.004 2.199 0.040 2.017 81.569
Omnibus: 0.393 Durbin-Watson: 2.085
Prob(Omnibus): 0.822 Jarque-Bera (JB): 0.529
Skew: 0.229 Prob(JB): 0.768
Kurtosis: 2.416 Cond. No. 175.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.651
Model: OLS Adj. R-squared: 0.616
Method: Least Squares F-statistic: 18.65
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.69e-05
Time: 05:24:57 Log-Likelihood: -101.00
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 41.3794 39.626 1.044 0.309 -41.278 124.037
C(dose)[T.1] 52.7596 8.922 5.913 0.000 34.148 71.371
expression 2.3824 7.272 0.328 0.747 -12.788 17.553
Omnibus: 0.204 Durbin-Watson: 1.945
Prob(Omnibus): 0.903 Jarque-Bera (JB): 0.395
Skew: 0.140 Prob(JB): 0.821
Kurtosis: 2.422 Cond. No. 52.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:24:57 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.041
Model: OLS Adj. R-squared: -0.005
Method: Least Squares F-statistic: 0.8897
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.356
Time: 05:24:57 Log-Likelihood: -112.63
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 19.8739 63.838 0.311 0.759 -112.884 152.632
expression 10.8791 11.534 0.943 0.356 -13.107 34.865
Omnibus: 3.468 Durbin-Watson: 2.493
Prob(Omnibus): 0.177 Jarque-Bera (JB): 1.440
Skew: 0.161 Prob(JB): 0.487
Kurtosis: 1.817 Cond. No. 51.6

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.022 0.884 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.477
Model: OLS Adj. R-squared: 0.334
Method: Least Squares F-statistic: 3.342
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0596
Time: 05:24:57 Log-Likelihood: -70.441
No. Observations: 15 AIC: 148.9
Df Residuals: 11 BIC: 151.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -2.1177 129.054 -0.016 0.987 -286.164 281.929
C(dose)[T.1] 247.4384 269.094 0.920 0.378 -344.833 839.709
expression 11.4380 21.138 0.541 0.599 -35.086 57.962
expression:C(dose)[T.1] -28.6954 38.042 -0.754 0.467 -112.426 55.035
Omnibus: 2.961 Durbin-Watson: 0.762
Prob(Omnibus): 0.228 Jarque-Bera (JB): 1.651
Skew: -0.813 Prob(JB): 0.438
Kurtosis: 2.993 Cond. No. 295.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.450
Model: OLS Adj. R-squared: 0.358
Method: Least Squares F-statistic: 4.905
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0277
Time: 05:24:57 Log-Likelihood: -70.819
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 51.7482 105.547 0.490 0.633 -178.220 281.716
C(dose)[T.1] 45.6450 28.495 1.602 0.135 -16.441 107.731
expression 2.5789 17.256 0.149 0.884 -35.018 40.176
Omnibus: 2.612 Durbin-Watson: 0.753
Prob(Omnibus): 0.271 Jarque-Bera (JB): 1.865
Skew: -0.832 Prob(JB): 0.393
Kurtosis: 2.536 Cond. No. 97.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:24:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.332
Model: OLS Adj. R-squared: 0.281
Method: Least Squares F-statistic: 6.465
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0245
Time: 05:24:57 Log-Likelihood: -72.272
No. Observations: 15 AIC: 148.5
Df Residuals: 13 BIC: 150.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -80.9963 69.191 -1.171 0.263 -230.475 68.482
expression 25.6301 10.080 2.543 0.025 3.854 47.406
Omnibus: 3.544 Durbin-Watson: 0.639
Prob(Omnibus): 0.170 Jarque-Bera (JB): 1.389
Skew: -0.312 Prob(JB): 0.499
Kurtosis: 1.647 Cond. No. 58.4