AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.306 | 0.586 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.600 |
Method: | Least Squares | F-statistic: | 11.99 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000124 |
Time: | 04:04:15 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 209.8 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 317.0623 | 616.529 | 0.514 | 0.613 | -973.347 1607.472 |
C(dose)[T.1] | 17.8013 | 919.923 | 0.019 | 0.985 | -1907.619 1943.221 |
expression | -23.7391 | 55.678 | -0.426 | 0.675 | -140.274 92.796 |
expression:C(dose)[T.1] | 3.2132 | 83.068 | 0.039 | 0.970 | -170.651 177.077 |
Omnibus: | 0.374 | Durbin-Watson: | 1.865 |
Prob(Omnibus): | 0.830 | Jarque-Bera (JB): | 0.524 |
Skew: | 0.146 | Prob(JB): | 0.769 |
Kurtosis: | 2.321 | Cond. No. | 2.92e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.93 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.43e-05 |
Time: | 04:04:15 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 301.0786 | 445.991 | 0.675 | 0.507 | -629.242 1231.399 |
C(dose)[T.1] | 53.3834 | 8.704 | 6.133 | 0.000 | 35.228 71.539 |
expression | -22.2956 | 40.275 | -0.554 | 0.586 | -106.308 61.717 |
Omnibus: | 0.400 | Durbin-Watson: | 1.865 |
Prob(Omnibus): | 0.819 | Jarque-Bera (JB): | 0.541 |
Skew: | 0.153 | Prob(JB): | 0.763 |
Kurtosis: | 2.313 | Cond. No. | 1.15e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:04:15 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.004 |
Model: | OLS | Adj. R-squared: | -0.043 |
Method: | Least Squares | F-statistic: | 0.08919 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.768 |
Time: | 04:04:15 | Log-Likelihood: | -113.06 |
No. Observations: | 23 | AIC: | 230.1 |
Df Residuals: | 21 | BIC: | 232.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 300.3341 | 738.745 | 0.407 | 0.688 | -1235.970 1836.638 |
expression | -19.9227 | 66.709 | -0.299 | 0.768 | -158.652 118.806 |
Omnibus: | 2.903 | Durbin-Watson: | 2.435 |
Prob(Omnibus): | 0.234 | Jarque-Bera (JB): | 1.520 |
Skew: | 0.311 | Prob(JB): | 0.468 |
Kurtosis: | 1.904 | Cond. No. | 1.15e+03 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
4.295 | 0.060 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.611 |
Model: | OLS | Adj. R-squared: | 0.504 |
Method: | Least Squares | F-statistic: | 5.751 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0129 |
Time: | 04:04:15 | Log-Likelihood: | -68.225 |
No. Observations: | 15 | AIC: | 144.5 |
Df Residuals: | 11 | BIC: | 147.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -498.3730 | 1093.821 | -0.456 | 0.658 | -2905.858 1909.112 |
C(dose)[T.1] | -826.6706 | 1295.840 | -0.638 | 0.537 | -3678.796 2025.455 |
expression | 49.5197 | 95.729 | 0.517 | 0.615 | -161.178 260.217 |
expression:C(dose)[T.1] | 77.8341 | 113.712 | 0.684 | 0.508 | -172.445 328.113 |
Omnibus: | 1.003 | Durbin-Watson: | 0.863 |
Prob(Omnibus): | 0.606 | Jarque-Bera (JB): | 0.765 |
Skew: | -0.213 | Prob(JB): | 0.682 |
Kurtosis: | 1.979 | Cond. No. | 3.14e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.594 |
Model: | OLS | Adj. R-squared: | 0.526 |
Method: | Least Squares | F-statistic: | 8.781 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00447 |
Time: | 04:04:15 | Log-Likelihood: | -68.538 |
No. Observations: | 15 | AIC: | 143.1 |
Df Residuals: | 12 | BIC: | 145.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1128.6395 | 577.188 | -1.955 | 0.074 | -2386.224 128.945 |
C(dose)[T.1] | 60.2504 | 14.522 | 4.149 | 0.001 | 28.610 91.891 |
expression | 104.6815 | 50.509 | 2.073 | 0.060 | -5.368 214.731 |
Omnibus: | 2.131 | Durbin-Watson: | 0.889 |
Prob(Omnibus): | 0.345 | Jarque-Bera (JB): | 1.024 |
Skew: | -0.180 | Prob(JB): | 0.599 |
Kurtosis: | 1.771 | Cond. No. | 983. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:04:15 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.012 |
Model: | OLS | Adj. R-squared: | -0.064 |
Method: | Least Squares | F-statistic: | 0.1549 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.700 |
Time: | 04:04:15 | Log-Likelihood: | -75.211 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -221.4265 | 800.757 | -0.277 | 0.786 | -1951.358 1508.505 |
expression | 27.7140 | 70.425 | 0.394 | 0.700 | -124.430 179.858 |
Omnibus: | 0.388 | Durbin-Watson: | 1.718 |
Prob(Omnibus): | 0.823 | Jarque-Bera (JB): | 0.495 |
Skew: | 0.062 | Prob(JB): | 0.781 |
Kurtosis: | 2.119 | Cond. No. | 908. |