AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 0.696 | 0.414 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.674 |
| Model: | OLS | Adj. R-squared: | 0.623 |
| Method: | Least Squares | F-statistic: | 13.11 |
| Date: | Wed, 05 Nov 2025 | Prob (F-statistic): | 7.15e-05 |
| Time: | 01:37:20 | Log-Likelihood: | -100.20 |
| No. Observations: | 23 | AIC: | 208.4 |
| Df Residuals: | 19 | BIC: | 213.0 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 89.9019 | 30.041 | 2.993 | 0.007 | 27.026 152.778 |
| C(dose)[T.1] | 18.7494 | 46.852 | 0.400 | 0.693 | -79.313 116.812 |
| expression | -10.4208 | 8.594 | -1.213 | 0.240 | -28.408 7.567 |
| expression:C(dose)[T.1] | 10.1819 | 11.505 | 0.885 | 0.387 | -13.899 34.263 |
| Omnibus: | 0.354 | Durbin-Watson: | 2.109 |
| Prob(Omnibus): | 0.838 | Jarque-Bera (JB): | 0.501 |
| Skew: | 0.007 | Prob(JB): | 0.778 |
| Kurtosis: | 2.277 | Cond. No. | 62.7 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.661 |
| Model: | OLS | Adj. R-squared: | 0.627 |
| Method: | Least Squares | F-statistic: | 19.49 |
| Date: | Wed, 05 Nov 2025 | Prob (F-statistic): | 2.01e-05 |
| Time: | 01:37:20 | Log-Likelihood: | -100.67 |
| No. Observations: | 23 | AIC: | 207.3 |
| Df Residuals: | 20 | BIC: | 210.7 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 70.4434 | 20.358 | 3.460 | 0.002 | 27.978 112.909 |
| C(dose)[T.1] | 59.0394 | 11.003 | 5.366 | 0.000 | 36.087 81.991 |
| expression | -4.7398 | 5.683 | -0.834 | 0.414 | -16.594 7.114 |
| Omnibus: | 1.121 | Durbin-Watson: | 1.984 |
| Prob(Omnibus): | 0.571 | Jarque-Bera (JB): | 0.818 |
| Skew: | 0.020 | Prob(JB): | 0.664 |
| Kurtosis: | 2.077 | Cond. No. | 21.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.649 |
| Model: | OLS | Adj. R-squared: | 0.632 |
| Method: | Least Squares | F-statistic: | 38.84 |
| Date: | Wed, 05 Nov 2025 | Prob (F-statistic): | 3.51e-06 |
| Time: | 01:37:20 | Log-Likelihood: | -101.06 |
| No. Observations: | 23 | AIC: | 206.1 |
| Df Residuals: | 21 | BIC: | 208.4 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
| C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
| Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
| Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
| Skew: | 0.060 | Prob(JB): | 0.785 |
| Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.173 |
| Model: | OLS | Adj. R-squared: | 0.133 |
| Method: | Least Squares | F-statistic: | 4.382 |
| Date: | Wed, 05 Nov 2025 | Prob (F-statistic): | 0.0486 |
| Time: | 01:37:20 | Log-Likelihood: | -110.93 |
| No. Observations: | 23 | AIC: | 225.9 |
| Df Residuals: | 21 | BIC: | 228.1 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 22.8806 | 27.935 | 0.819 | 0.422 | -35.213 80.974 |
| expression | 14.2070 | 6.787 | 2.093 | 0.049 | 0.093 28.322 |
| Omnibus: | 0.067 | Durbin-Watson: | 1.991 |
| Prob(Omnibus): | 0.967 | Jarque-Bera (JB): | 0.053 |
| Skew: | -0.008 | Prob(JB): | 0.974 |
| Kurtosis: | 2.766 | Cond. No. | 18.5 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
| F-statistic | p-value | df difference |
| 1.133 | 0.308 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.605 |
| Model: | OLS | Adj. R-squared: | 0.498 |
| Method: | Least Squares | F-statistic: | 5.621 |
| Date: | Wed, 05 Nov 2025 | Prob (F-statistic): | 0.0139 |
| Time: | 01:37:20 | Log-Likelihood: | -68.329 |
| No. Observations: | 15 | AIC: | 144.7 |
| Df Residuals: | 11 | BIC: | 147.5 |
| Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 122.3911 | 94.689 | 1.293 | 0.223 | -86.019 330.801 |
| C(dose)[T.1] | -164.5519 | 123.816 | -1.329 | 0.211 | -437.069 107.966 |
| expression | -9.7085 | 16.629 | -0.584 | 0.571 | -46.309 26.892 |
| expression:C(dose)[T.1] | 37.9910 | 21.808 | 1.742 | 0.109 | -10.008 85.990 |
| Omnibus: | 1.929 | Durbin-Watson: | 0.887 |
| Prob(Omnibus): | 0.381 | Jarque-Bera (JB): | 1.358 |
| Skew: | -0.704 | Prob(JB): | 0.507 |
| Kurtosis: | 2.564 | Cond. No. | 144. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.496 |
| Model: | OLS | Adj. R-squared: | 0.412 |
| Method: | Least Squares | F-statistic: | 5.912 |
| Date: | Wed, 05 Nov 2025 | Prob (F-statistic): | 0.0163 |
| Time: | 01:37:20 | Log-Likelihood: | -70.157 |
| No. Observations: | 15 | AIC: | 146.3 |
| Df Residuals: | 12 | BIC: | 148.4 |
| Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | -2.6683 | 66.777 | -0.040 | 0.969 | -148.164 142.827 |
| C(dose)[T.1] | 49.7787 | 15.056 | 3.306 | 0.006 | 16.975 82.582 |
| expression | 12.3818 | 11.635 | 1.064 | 0.308 | -12.968 37.731 |
| Omnibus: | 2.790 | Durbin-Watson: | 0.819 |
| Prob(Omnibus): | 0.248 | Jarque-Bera (JB): | 1.974 |
| Skew: | -0.737 | Prob(JB): | 0.373 |
| Kurtosis: | 2.007 | Cond. No. | 52.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.449 |
| Model: | OLS | Adj. R-squared: | 0.406 |
| Method: | Least Squares | F-statistic: | 10.58 |
| Date: | Wed, 05 Nov 2025 | Prob (F-statistic): | 0.00629 |
| Time: | 01:37:20 | Log-Likelihood: | -70.833 |
| No. Observations: | 15 | AIC: | 145.7 |
| Df Residuals: | 13 | BIC: | 147.1 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
| C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
| Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
| Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
| Skew: | -0.843 | Prob(JB): | 0.393 |
| Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
| Dep. Variable: | AIM | R-squared: | 0.037 |
| Model: | OLS | Adj. R-squared: | -0.037 |
| Method: | Least Squares | F-statistic: | 0.5059 |
| Date: | Wed, 05 Nov 2025 | Prob (F-statistic): | 0.489 |
| Time: | 01:37:20 | Log-Likelihood: | -75.014 |
| No. Observations: | 15 | AIC: | 154.0 |
| Df Residuals: | 13 | BIC: | 155.4 |
| Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
| Intercept | 31.7589 | 87.606 | 0.363 | 0.723 | -157.501 221.019 |
| expression | 10.9839 | 15.442 | 0.711 | 0.489 | -22.377 44.345 |
| Omnibus: | 0.107 | Durbin-Watson: | 1.708 |
| Prob(Omnibus): | 0.948 | Jarque-Bera (JB): | 0.294 |
| Skew: | -0.145 | Prob(JB): | 0.863 |
| Kurtosis: | 2.378 | Cond. No. | 51.4 |