AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.498 | 0.489 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000106 |
Time: | 03:49:57 | Log-Likelihood: | -100.69 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -38.5197 | 120.281 | -0.320 | 0.752 | -290.271 213.231 |
C(dose)[T.1] | 124.0378 | 173.531 | 0.715 | 0.483 | -239.167 487.242 |
expression | 12.9935 | 16.832 | 0.772 | 0.450 | -22.237 48.224 |
expression:C(dose)[T.1] | -9.7188 | 25.064 | -0.388 | 0.703 | -62.178 42.741 |
Omnibus: | 0.439 | Durbin-Watson: | 1.684 |
Prob(Omnibus): | 0.803 | Jarque-Bera (JB): | 0.554 |
Skew: | -0.090 | Prob(JB): | 0.758 |
Kurtosis: | 2.262 | Cond. No. | 353. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.22e-05 |
Time: | 03:49:57 | Log-Likelihood: | -100.78 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -7.2378 | 87.299 | -0.083 | 0.935 | -189.341 174.865 |
C(dose)[T.1] | 56.8661 | 10.003 | 5.685 | 0.000 | 36.000 77.732 |
expression | 8.6101 | 12.204 | 0.706 | 0.489 | -16.847 34.067 |
Omnibus: | 0.306 | Durbin-Watson: | 1.743 |
Prob(Omnibus): | 0.858 | Jarque-Bera (JB): | 0.479 |
Skew: | -0.126 | Prob(JB): | 0.787 |
Kurtosis: | 2.339 | Cond. No. | 144. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:49:57 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.104 |
Model: | OLS | Adj. R-squared: | 0.062 |
Method: | Least Squares | F-statistic: | 2.445 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.133 |
Time: | 03:49:57 | Log-Likelihood: | -111.84 |
No. Observations: | 23 | AIC: | 227.7 |
Df Residuals: | 21 | BIC: | 229.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 260.7357 | 115.978 | 2.248 | 0.035 | 19.546 501.925 |
expression | -26.0815 | 16.681 | -1.564 | 0.133 | -60.772 8.609 |
Omnibus: | 0.982 | Durbin-Watson: | 2.566 |
Prob(Omnibus): | 0.612 | Jarque-Bera (JB): | 0.877 |
Skew: | 0.250 | Prob(JB): | 0.645 |
Kurtosis: | 2.185 | Cond. No. | 120. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.233 | 0.638 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.313 |
Method: | Least Squares | F-statistic: | 3.123 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0700 |
Time: | 03:49:57 | Log-Likelihood: | -70.679 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 3.9619 | 353.077 | 0.011 | 0.991 | -773.155 781.078 |
C(dose)[T.1] | -4.0851 | 440.714 | -0.009 | 0.993 | -974.089 965.919 |
expression | 8.9183 | 49.586 | 0.180 | 0.861 | -100.220 118.056 |
expression:C(dose)[T.1] | 7.5753 | 62.006 | 0.122 | 0.905 | -128.899 144.050 |
Omnibus: | 3.626 | Durbin-Watson: | 0.845 |
Prob(Omnibus): | 0.163 | Jarque-Bera (JB): | 2.138 |
Skew: | -0.925 | Prob(JB): | 0.343 |
Kurtosis: | 2.996 | Cond. No. | 556. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.459 |
Model: | OLS | Adj. R-squared: | 0.369 |
Method: | Least Squares | F-statistic: | 5.096 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0250 |
Time: | 03:49:57 | Log-Likelihood: | -70.689 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -30.5141 | 203.305 | -0.150 | 0.883 | -473.477 412.449 |
C(dose)[T.1] | 49.7203 | 15.627 | 3.182 | 0.008 | 15.672 83.768 |
expression | 13.7628 | 28.523 | 0.483 | 0.638 | -48.384 75.910 |
Omnibus: | 3.588 | Durbin-Watson: | 0.885 |
Prob(Omnibus): | 0.166 | Jarque-Bera (JB): | 2.151 |
Skew: | -0.927 | Prob(JB): | 0.341 |
Kurtosis: | 2.961 | Cond. No. | 190. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:49:57 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.003 |
Model: | OLS | Adj. R-squared: | -0.074 |
Method: | Least Squares | F-statistic: | 0.04036 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.844 |
Time: | 03:49:57 | Log-Likelihood: | -75.277 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 40.7508 | 263.602 | 0.155 | 0.880 | -528.727 610.229 |
expression | 7.4570 | 37.120 | 0.201 | 0.844 | -72.735 87.649 |
Omnibus: | 0.466 | Durbin-Watson: | 1.665 |
Prob(Omnibus): | 0.792 | Jarque-Bera (JB): | 0.526 |
Skew: | 0.024 | Prob(JB): | 0.769 |
Kurtosis: | 2.084 | Cond. No. | 188. |