AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.691 0.416 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.48e-05
Time: 04:13:28 Log-Likelihood: -100.56
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 26.6167 111.994 0.238 0.815 -207.790 261.023
C(dose)[T.1] -15.6728 155.923 -0.101 0.921 -342.022 310.677
expression 4.3242 17.526 0.247 0.808 -32.358 41.006
expression:C(dose)[T.1] 10.6890 24.299 0.440 0.665 -40.169 61.547
Omnibus: 0.573 Durbin-Watson: 2.034
Prob(Omnibus): 0.751 Jarque-Bera (JB): 0.628
Skew: 0.313 Prob(JB): 0.730
Kurtosis: 2.486 Cond. No. 305.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 19.48
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.02e-05
Time: 04:13:28 Log-Likelihood: -100.67
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -8.8639 76.116 -0.116 0.908 -167.640 149.912
C(dose)[T.1] 52.8068 8.646 6.108 0.000 34.772 70.842
expression 9.8847 11.892 0.831 0.416 -14.922 34.692
Omnibus: 0.482 Durbin-Watson: 1.949
Prob(Omnibus): 0.786 Jarque-Bera (JB): 0.572
Skew: 0.280 Prob(JB): 0.751
Kurtosis: 2.468 Cond. No. 116.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:13:28 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.028
Model: OLS Adj. R-squared: -0.018
Method: Least Squares F-statistic: 0.6055
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.445
Time: 04:13:28 Log-Likelihood: -112.78
No. Observations: 23 AIC: 229.6
Df Residuals: 21 BIC: 231.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -17.9492 125.714 -0.143 0.888 -279.385 243.487
expression 15.2450 19.592 0.778 0.445 -25.498 55.988
Omnibus: 2.373 Durbin-Watson: 2.673
Prob(Omnibus): 0.305 Jarque-Bera (JB): 1.393
Skew: 0.310 Prob(JB): 0.498
Kurtosis: 1.966 Cond. No. 116.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
5.248 0.041 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.617
Model: OLS Adj. R-squared: 0.512
Method: Least Squares F-statistic: 5.899
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0119
Time: 04:13:28 Log-Likelihood: -68.108
No. Observations: 15 AIC: 144.2
Df Residuals: 11 BIC: 147.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -232.0861 230.838 -1.005 0.336 -740.157 275.985
C(dose)[T.1] 75.8699 277.747 0.273 0.790 -535.447 687.186
expression 42.3652 32.620 1.299 0.221 -29.432 114.162
expression:C(dose)[T.1] -2.9009 39.514 -0.073 0.943 -89.871 84.069
Omnibus: 0.001 Durbin-Watson: 1.353
Prob(Omnibus): 1.000 Jarque-Bera (JB): 0.187
Skew: 0.008 Prob(JB): 0.911
Kurtosis: 2.454 Cond. No. 418.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.616
Model: OLS Adj. R-squared: 0.553
Method: Least Squares F-statistic: 9.645
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00318
Time: 04:13:28 Log-Likelihood: -68.112
No. Observations: 15 AIC: 142.2
Df Residuals: 12 BIC: 144.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -218.1090 125.009 -1.745 0.107 -490.480 54.262
C(dose)[T.1] 55.5051 13.414 4.138 0.001 26.278 84.732
expression 40.3882 17.630 2.291 0.041 1.976 78.801
Omnibus: 0.002 Durbin-Watson: 1.339
Prob(Omnibus): 0.999 Jarque-Bera (JB): 0.159
Skew: -0.000 Prob(JB): 0.924
Kurtosis: 2.495 Cond. No. 137.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:13:28 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.069
Model: OLS Adj. R-squared: -0.002
Method: Least Squares F-statistic: 0.9683
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.343
Time: 04:13:28 Log-Likelihood: -74.761
No. Observations: 15 AIC: 153.5
Df Residuals: 13 BIC: 154.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -83.8767 180.691 -0.464 0.650 -474.235 306.482
expression 25.4123 25.825 0.984 0.343 -30.379 81.203
Omnibus: 0.609 Durbin-Watson: 1.615
Prob(Omnibus): 0.738 Jarque-Bera (JB): 0.643
Skew: 0.288 Prob(JB): 0.725
Kurtosis: 2.165 Cond. No. 132.