AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.248 0.624 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.693
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 14.27
Date: Thu, 03 Apr 2025 Prob (F-statistic): 4.16e-05
Time: 22:50:42 Log-Likelihood: -99.536
No. Observations: 23 AIC: 207.1
Df Residuals: 19 BIC: 211.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -31.8727 68.385 -0.466 0.646 -175.005 111.260
C(dose)[T.1] 252.9290 128.130 1.974 0.063 -15.249 521.107
expression 13.4727 10.664 1.263 0.222 -8.848 35.793
expression:C(dose)[T.1] -31.3955 20.137 -1.559 0.135 -73.543 10.752
Omnibus: 0.282 Durbin-Watson: 1.748
Prob(Omnibus): 0.868 Jarque-Bera (JB): 0.460
Skew: -0.031 Prob(JB): 0.795
Kurtosis: 2.310 Cond. No. 236.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.653
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.85
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.50e-05
Time: 22:50:42 Log-Likelihood: -100.92
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 24.3851 60.132 0.406 0.689 -101.049 149.819
C(dose)[T.1] 53.5984 8.732 6.138 0.000 35.385 71.812
expression 4.6677 9.364 0.498 0.624 -14.865 24.201
Omnibus: 0.419 Durbin-Watson: 1.959
Prob(Omnibus): 0.811 Jarque-Bera (JB): 0.536
Skew: 0.015 Prob(JB): 0.765
Kurtosis: 2.253 Cond. No. 90.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:50:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.006176
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.938
Time: 22:50:43 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.9714 98.827 0.728 0.474 -133.550 277.492
expression 1.2174 15.491 0.079 0.938 -30.998 33.433
Omnibus: 3.331 Durbin-Watson: 2.483
Prob(Omnibus): 0.189 Jarque-Bera (JB): 1.599
Skew: 0.304 Prob(JB): 0.450
Kurtosis: 1.860 Cond. No. 89.5

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.597 0.133 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.551
Model: OLS Adj. R-squared: 0.429
Method: Least Squares F-statistic: 4.506
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0270
Time: 22:50:43 Log-Likelihood: -69.289
No. Observations: 15 AIC: 146.6
Df Residuals: 11 BIC: 149.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -102.8644 126.366 -0.814 0.433 -380.994 175.265
C(dose)[T.1] -77.6972 380.729 -0.204 0.842 -915.675 760.281
expression 26.4506 19.555 1.353 0.203 -16.591 69.492
expression:C(dose)[T.1] 19.6166 58.985 0.333 0.746 -110.209 149.443
Omnibus: 7.629 Durbin-Watson: 0.945
Prob(Omnibus): 0.022 Jarque-Bera (JB): 4.199
Skew: -1.127 Prob(JB): 0.123
Kurtosis: 4.281 Cond. No. 398.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.547
Model: OLS Adj. R-squared: 0.471
Method: Least Squares F-statistic: 7.240
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00866
Time: 22:50:43 Log-Likelihood: -69.364
No. Observations: 15 AIC: 144.7
Df Residuals: 12 BIC: 146.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -116.7457 114.768 -1.017 0.329 -366.804 133.313
C(dose)[T.1] 48.8247 14.273 3.421 0.005 17.726 79.923
expression 28.6067 17.753 1.611 0.133 -10.073 67.286
Omnibus: 5.377 Durbin-Watson: 0.974
Prob(Omnibus): 0.068 Jarque-Bera (JB): 2.729
Skew: -0.983 Prob(JB): 0.255
Kurtosis: 3.708 Cond. No. 107.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:50:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.105
Model: OLS Adj. R-squared: 0.036
Method: Least Squares F-statistic: 1.524
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.239
Time: 22:50:43 Log-Likelihood: -74.469
No. Observations: 15 AIC: 152.9
Df Residuals: 13 BIC: 154.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -97.0316 154.771 -0.627 0.542 -431.395 237.332
expression 29.5882 23.967 1.235 0.239 -22.190 81.367
Omnibus: 2.977 Durbin-Watson: 2.007
Prob(Omnibus): 0.226 Jarque-Bera (JB): 1.221
Skew: 0.237 Prob(JB): 0.543
Kurtosis: 1.685 Cond. No. 106.