AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.478 0.238 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.622
Method: Least Squares F-statistic: 13.05
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.37e-05
Time: 04:04:14 Log-Likelihood: -100.24
No. Observations: 23 AIC: 208.5
Df Residuals: 19 BIC: 213.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 144.5630 130.069 1.111 0.280 -127.674 416.800
C(dose)[T.1] 41.1541 153.609 0.268 0.792 -280.353 362.661
expression -11.9716 17.215 -0.695 0.495 -48.003 24.060
expression:C(dose)[T.1] 0.3070 21.075 0.015 0.989 -43.804 44.418
Omnibus: 0.349 Durbin-Watson: 1.995
Prob(Omnibus): 0.840 Jarque-Bera (JB): 0.499
Skew: 0.041 Prob(JB): 0.779
Kurtosis: 2.283 Cond. No. 360.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.673
Model: OLS Adj. R-squared: 0.641
Method: Least Squares F-statistic: 20.60
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.39e-05
Time: 04:04:14 Log-Likelihood: -100.24
No. Observations: 23 AIC: 206.5
Df Residuals: 20 BIC: 209.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 143.0170 73.290 1.951 0.065 -9.862 295.896
C(dose)[T.1] 43.3848 11.775 3.685 0.001 18.823 67.946
expression -11.7668 9.680 -1.216 0.238 -31.958 8.424
Omnibus: 0.342 Durbin-Watson: 1.989
Prob(Omnibus): 0.843 Jarque-Bera (JB): 0.496
Skew: 0.043 Prob(JB): 0.781
Kurtosis: 2.286 Cond. No. 128.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:04:14 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.425
Method: Least Squares F-statistic: 17.28
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000447
Time: 04:04:14 Log-Likelihood: -106.20
No. Observations: 23 AIC: 216.4
Df Residuals: 21 BIC: 218.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 340.8938 63.061 5.406 0.000 209.751 472.037
expression -36.5644 8.797 -4.157 0.000 -54.858 -18.271
Omnibus: 0.296 Durbin-Watson: 2.123
Prob(Omnibus): 0.862 Jarque-Bera (JB): 0.311
Skew: 0.228 Prob(JB): 0.856
Kurtosis: 2.658 Cond. No. 86.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.245 0.286 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.503
Model: OLS Adj. R-squared: 0.367
Method: Least Squares F-statistic: 3.707
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0460
Time: 04:04:14 Log-Likelihood: -70.061
No. Observations: 15 AIC: 148.1
Df Residuals: 11 BIC: 151.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 201.8230 149.312 1.352 0.204 -126.811 530.457
C(dose)[T.1] -0.7523 203.119 -0.004 0.997 -447.815 446.310
expression -16.3402 18.101 -0.903 0.386 -56.180 23.500
expression:C(dose)[T.1] 5.4863 25.279 0.217 0.832 -50.153 61.126
Omnibus: 1.861 Durbin-Watson: 0.861
Prob(Omnibus): 0.394 Jarque-Bera (JB): 1.187
Skew: -0.417 Prob(JB): 0.552
Kurtosis: 1.904 Cond. No. 284.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.501
Model: OLS Adj. R-squared: 0.417
Method: Least Squares F-statistic: 6.014
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0155
Time: 04:04:14 Log-Likelihood: -70.093
No. Observations: 15 AIC: 146.2
Df Residuals: 12 BIC: 148.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 178.6878 100.312 1.781 0.100 -39.872 397.248
C(dose)[T.1] 43.1827 15.922 2.712 0.019 8.492 77.873
expression -13.5274 12.124 -1.116 0.286 -39.942 12.888
Omnibus: 2.013 Durbin-Watson: 0.848
Prob(Omnibus): 0.366 Jarque-Bera (JB): 1.204
Skew: -0.400 Prob(JB): 0.548
Kurtosis: 1.866 Cond. No. 110.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:04:14 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.194
Model: OLS Adj. R-squared: 0.132
Method: Least Squares F-statistic: 3.138
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0999
Time: 04:04:14 Log-Likelihood: -73.678
No. Observations: 15 AIC: 151.4
Df Residuals: 13 BIC: 152.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 290.6272 111.561 2.605 0.022 49.614 531.641
expression -24.6581 13.920 -1.771 0.100 -54.730 5.414
Omnibus: 1.971 Durbin-Watson: 1.406
Prob(Omnibus): 0.373 Jarque-Bera (JB): 1.210
Skew: 0.413 Prob(JB): 0.546
Kurtosis: 1.880 Cond. No. 99.6