AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.421 0.247 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.674
Model: OLS Adj. R-squared: 0.623
Method: Least Squares F-statistic: 13.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.12e-05
Time: 05:12:22 Log-Likelihood: -100.20
No. Observations: 23 AIC: 208.4
Df Residuals: 19 BIC: 212.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -16.2099 73.377 -0.221 0.828 -169.790 137.370
C(dose)[T.1] -31.9708 222.095 -0.144 0.887 -496.821 432.880
expression 7.9568 8.263 0.963 0.348 -9.339 25.252
expression:C(dose)[T.1] 8.0018 23.008 0.348 0.732 -40.154 56.157
Omnibus: 0.322 Durbin-Watson: 1.984
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.161
Skew: -0.188 Prob(JB): 0.923
Kurtosis: 2.835 Cond. No. 563.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.640
Method: Least Squares F-statistic: 20.52
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.43e-05
Time: 05:12:22 Log-Likelihood: -100.27
No. Observations: 23 AIC: 206.5
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -25.3450 66.992 -0.378 0.709 -165.088 114.398
C(dose)[T.1] 45.1745 10.895 4.146 0.000 22.448 67.901
expression 8.9890 7.541 1.192 0.247 -6.741 24.719
Omnibus: 0.153 Durbin-Watson: 1.923
Prob(Omnibus): 0.926 Jarque-Bera (JB): 0.202
Skew: -0.159 Prob(JB): 0.904
Kurtosis: 2.669 Cond. No. 150.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:12:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.391
Model: OLS Adj. R-squared: 0.362
Method: Least Squares F-statistic: 13.46
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00143
Time: 05:12:22 Log-Likelihood: -107.41
No. Observations: 23 AIC: 218.8
Df Residuals: 21 BIC: 221.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -186.1916 72.688 -2.562 0.018 -337.354 -35.029
expression 28.6406 7.806 3.669 0.001 12.408 44.873
Omnibus: 0.524 Durbin-Watson: 1.743
Prob(Omnibus): 0.770 Jarque-Bera (JB): 0.435
Skew: -0.301 Prob(JB): 0.805
Kurtosis: 2.699 Cond. No. 122.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.532 0.480 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.493
Model: OLS Adj. R-squared: 0.354
Method: Least Squares F-statistic: 3.561
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0509
Time: 05:12:22 Log-Likelihood: -70.210
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.2990 124.718 0.612 0.553 -198.204 350.802
C(dose)[T.1] -52.4343 157.332 -0.333 0.745 -398.719 293.850
expression -0.9893 13.851 -0.071 0.944 -31.475 29.496
expression:C(dose)[T.1] 11.8864 17.810 0.667 0.518 -27.313 51.086
Omnibus: 2.368 Durbin-Watson: 1.025
Prob(Omnibus): 0.306 Jarque-Bera (JB): 1.621
Skew: -0.782 Prob(JB): 0.445
Kurtosis: 2.617 Cond. No. 247.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.472
Model: OLS Adj. R-squared: 0.384
Method: Least Squares F-statistic: 5.367
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0216
Time: 05:12:22 Log-Likelihood: -70.508
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 11.8407 77.066 0.154 0.880 -156.072 179.754
C(dose)[T.1] 52.0083 15.878 3.276 0.007 17.414 86.603
expression 6.1999 8.503 0.729 0.480 -12.327 24.727
Omnibus: 2.761 Durbin-Watson: 0.946
Prob(Omnibus): 0.251 Jarque-Bera (JB): 1.898
Skew: -0.851 Prob(JB): 0.387
Kurtosis: 2.625 Cond. No. 89.5

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:12:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.002688
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.959
Time: 05:12:22 Log-Likelihood: -75.299
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 98.5999 95.695 1.030 0.322 -108.137 305.337
expression -0.5655 10.907 -0.052 0.959 -24.129 22.998
Omnibus: 0.638 Durbin-Watson: 1.616
Prob(Omnibus): 0.727 Jarque-Bera (JB): 0.594
Skew: 0.050 Prob(JB): 0.743
Kurtosis: 2.030 Cond. No. 83.7