AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.256 | 0.618 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.31 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000106 |
Time: | 06:23:35 | Log-Likelihood: | -100.69 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.6799 | 39.196 | 1.472 | 0.158 | -24.358 139.717 |
C(dose)[T.1] | 91.5255 | 66.220 | 1.382 | 0.183 | -47.075 230.126 |
expression | -0.8327 | 9.287 | -0.090 | 0.929 | -20.270 18.604 |
expression:C(dose)[T.1] | -10.6141 | 17.269 | -0.615 | 0.546 | -46.760 25.531 |
Omnibus: | 0.110 | Durbin-Watson: | 1.822 |
Prob(Omnibus): | 0.947 | Jarque-Bera (JB): | 0.324 |
Skew: | -0.078 | Prob(JB): | 0.850 |
Kurtosis: | 2.440 | Cond. No. | 74.6 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.619 |
Method: | Least Squares | F-statistic: | 18.86 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.49e-05 |
Time: | 06:23:35 | Log-Likelihood: | -100.92 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 70.4754 | 32.689 | 2.156 | 0.043 | 2.288 138.663 |
C(dose)[T.1] | 51.2713 | 9.622 | 5.329 | 0.000 | 31.200 71.343 |
expression | -3.9021 | 7.707 | -0.506 | 0.618 | -19.978 12.174 |
Omnibus: | 0.258 | Durbin-Watson: | 1.754 |
Prob(Omnibus): | 0.879 | Jarque-Bera (JB): | 0.445 |
Skew: | 0.055 | Prob(JB): | 0.800 |
Kurtosis: | 2.327 | Cond. No. | 32.1 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 06:23:35 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.162 |
Model: | OLS | Adj. R-squared: | 0.122 |
Method: | Least Squares | F-statistic: | 4.047 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0572 |
Time: | 06:23:35 | Log-Likelihood: | -111.08 |
No. Observations: | 23 | AIC: | 226.2 |
Df Residuals: | 21 | BIC: | 228.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 163.1815 | 42.011 | 3.884 | 0.001 | 75.816 250.547 |
expression | -21.3156 | 10.595 | -2.012 | 0.057 | -43.350 0.719 |
Omnibus: | 5.025 | Durbin-Watson: | 2.096 |
Prob(Omnibus): | 0.081 | Jarque-Bera (JB): | 1.633 |
Skew: | 0.089 | Prob(JB): | 0.442 |
Kurtosis: | 1.707 | Cond. No. | 26.8 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.988 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.518 |
Model: | OLS | Adj. R-squared: | 0.386 |
Method: | Least Squares | F-statistic: | 3.936 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0393 |
Time: | 06:23:35 | Log-Likelihood: | -69.831 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 11 | BIC: | 150.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 236.3958 | 178.226 | 1.326 | 0.212 | -155.877 628.669 |
C(dose)[T.1] | -257.5763 | 245.394 | -1.050 | 0.316 | -797.685 282.532 |
expression | -34.4521 | 36.268 | -0.950 | 0.363 | -114.277 45.373 |
expression:C(dose)[T.1] | 60.6741 | 48.390 | 1.254 | 0.236 | -45.832 167.180 |
Omnibus: | 2.975 | Durbin-Watson: | 1.020 |
Prob(Omnibus): | 0.226 | Jarque-Bera (JB): | 1.916 |
Skew: | -0.867 | Prob(JB): | 0.384 |
Kurtosis: | 2.764 | Cond. No. | 232. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.885 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0281 |
Time: | 06:23:35 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 69.2401 | 121.076 | 0.572 | 0.578 | -194.561 333.041 |
C(dose)[T.1] | 49.3261 | 17.947 | 2.748 | 0.018 | 10.222 88.430 |
expression | -0.3694 | 24.576 | -0.015 | 0.988 | -53.915 53.176 |
Omnibus: | 2.704 | Durbin-Watson: | 0.809 |
Prob(Omnibus): | 0.259 | Jarque-Bera (JB): | 1.863 |
Skew: | -0.842 | Prob(JB): | 0.394 |
Kurtosis: | 2.618 | Cond. No. | 82.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 06:23:35 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.102 |
Model: | OLS | Adj. R-squared: | 0.033 |
Method: | Least Squares | F-statistic: | 1.474 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.246 |
Time: | 06:23:35 | Log-Likelihood: | -74.495 |
No. Observations: | 15 | AIC: | 153.0 |
Df Residuals: | 13 | BIC: | 154.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -69.7050 | 134.926 | -0.517 | 0.614 | -361.195 221.785 |
expression | 32.0867 | 26.432 | 1.214 | 0.246 | -25.017 89.190 |
Omnibus: | 0.479 | Durbin-Watson: | 1.540 |
Prob(Omnibus): | 0.787 | Jarque-Bera (JB): | 0.534 |
Skew: | -0.331 | Prob(JB): | 0.766 |
Kurtosis: | 2.355 | Cond. No. | 74.3 |