AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.000 | 0.996 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 13.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.84e-05 |
Time: | 04:40:06 | Log-Likelihood: | -100.15 |
No. Observations: | 23 | AIC: | 208.3 |
Df Residuals: | 19 | BIC: | 212.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -82.9622 | 187.202 | -0.443 | 0.663 | -474.781 308.857 |
C(dose)[T.1] | 455.4510 | 321.357 | 1.417 | 0.173 | -217.157 1128.059 |
expression | 15.1953 | 20.727 | 0.733 | 0.472 | -28.187 58.578 |
expression:C(dose)[T.1] | -44.5779 | 35.612 | -1.252 | 0.226 | -119.116 29.960 |
Omnibus: | 1.720 | Durbin-Watson: | 1.846 |
Prob(Omnibus): | 0.423 | Jarque-Bera (JB): | 1.051 |
Skew: | -0.159 | Prob(JB): | 0.591 |
Kurtosis: | 2.002 | Cond. No. | 823. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.49 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:40:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 53.3528 | 154.411 | 0.346 | 0.733 | -268.743 375.449 |
C(dose)[T.1] | 53.3381 | 8.772 | 6.081 | 0.000 | 35.041 71.635 |
expression | 0.0948 | 17.092 | 0.006 | 0.996 | -35.558 35.748 |
Omnibus: | 0.323 | Durbin-Watson: | 1.887 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.486 |
Skew: | 0.059 | Prob(JB): | 0.784 |
Kurtosis: | 2.298 | Cond. No. | 322. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:40:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.004851 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.945 |
Time: | 04:40:06 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 97.4050 | 254.060 | 0.383 | 0.705 | -430.942 625.752 |
expression | -1.9604 | 28.148 | -0.070 | 0.945 | -60.497 56.576 |
Omnibus: | 3.435 | Durbin-Watson: | 2.486 |
Prob(Omnibus): | 0.180 | Jarque-Bera (JB): | 1.580 |
Skew: | 0.280 | Prob(JB): | 0.454 |
Kurtosis: | 1.844 | Cond. No. | 322. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.595 | 0.456 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.548 |
Model: | OLS | Adj. R-squared: | 0.425 |
Method: | Least Squares | F-statistic: | 4.449 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 04:40:06 | Log-Likelihood: | -69.341 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 11 | BIC: | 149.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -36.5826 | 317.264 | -0.115 | 0.910 | -734.876 661.711 |
C(dose)[T.1] | 692.3675 | 475.829 | 1.455 | 0.174 | -354.924 1739.659 |
expression | 11.5946 | 35.346 | 0.328 | 0.749 | -66.202 89.391 |
expression:C(dose)[T.1] | -69.3614 | 51.882 | -1.337 | 0.208 | -183.554 44.831 |
Omnibus: | 0.977 | Durbin-Watson: | 0.845 |
Prob(Omnibus): | 0.613 | Jarque-Bera (JB): | 0.852 |
Skew: | -0.486 | Prob(JB): | 0.653 |
Kurtosis: | 2.355 | Cond. No. | 778. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.475 |
Model: | OLS | Adj. R-squared: | 0.387 |
Method: | Least Squares | F-statistic: | 5.424 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0210 |
Time: | 04:40:06 | Log-Likelihood: | -70.470 |
No. Observations: | 15 | AIC: | 146.9 |
Df Residuals: | 12 | BIC: | 149.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 252.2105 | 239.866 | 1.051 | 0.314 | -270.412 774.833 |
C(dose)[T.1] | 56.6681 | 18.163 | 3.120 | 0.009 | 17.094 96.242 |
expression | -20.5985 | 26.710 | -0.771 | 0.456 | -78.794 37.597 |
Omnibus: | 3.068 | Durbin-Watson: | 0.739 |
Prob(Omnibus): | 0.216 | Jarque-Bera (JB): | 2.145 |
Skew: | -0.905 | Prob(JB): | 0.342 |
Kurtosis: | 2.603 | Cond. No. | 291. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:40:06 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.049 |
Model: | OLS | Adj. R-squared: | -0.024 |
Method: | Least Squares | F-statistic: | 0.6667 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.429 |
Time: | 04:40:06 | Log-Likelihood: | -74.925 |
No. Observations: | 15 | AIC: | 153.8 |
Df Residuals: | 13 | BIC: | 155.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -124.9124 | 267.887 | -0.466 | 0.649 | -703.647 453.822 |
expression | 23.8516 | 29.212 | 0.816 | 0.429 | -39.257 86.961 |
Omnibus: | 1.004 | Durbin-Watson: | 1.317 |
Prob(Omnibus): | 0.605 | Jarque-Bera (JB): | 0.749 |
Skew: | 0.179 | Prob(JB): | 0.688 |
Kurtosis: | 1.966 | Cond. No. | 251. |