AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.727 | 0.404 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.612 |
Method: | Least Squares | F-statistic: | 12.55 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 9.37e-05 |
Time: | 22:47:16 | Log-Likelihood: | -100.54 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -111.2912 | 179.176 | -0.621 | 0.542 | -486.311 263.728 |
C(dose)[T.1] | 176.6784 | 310.769 | 0.569 | 0.576 | -473.768 827.125 |
expression | 16.5421 | 17.899 | 0.924 | 0.367 | -20.920 54.005 |
expression:C(dose)[T.1] | -12.6514 | 29.482 | -0.429 | 0.673 | -74.357 49.054 |
Omnibus: | 0.003 | Durbin-Watson: | 1.973 |
Prob(Omnibus): | 0.999 | Jarque-Bera (JB): | 0.171 |
Skew: | 0.018 | Prob(JB): | 0.918 |
Kurtosis: | 2.580 | Cond. No. | 914. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.661 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.53 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 1.98e-05 |
Time: | 22:47:16 | Log-Likelihood: | -100.65 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -64.6370 | 139.488 | -0.463 | 0.648 | -355.604 226.330 |
C(dose)[T.1] | 43.4685 | 14.427 | 3.013 | 0.007 | 13.375 73.562 |
expression | 11.8789 | 13.929 | 0.853 | 0.404 | -17.177 40.935 |
Omnibus: | 0.014 | Durbin-Watson: | 2.028 |
Prob(Omnibus): | 0.993 | Jarque-Bera (JB): | 0.119 |
Skew: | -0.034 | Prob(JB): | 0.942 |
Kurtosis: | 2.654 | Cond. No. | 342. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:47:16 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.508 |
Model: | OLS | Adj. R-squared: | 0.484 |
Method: | Least Squares | F-statistic: | 21.65 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000136 |
Time: | 22:47:16 | Log-Likelihood: | -104.96 |
No. Observations: | 23 | AIC: | 213.9 |
Df Residuals: | 21 | BIC: | 216.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -394.0466 | 101.939 | -3.866 | 0.001 | -606.040 -182.053 |
expression | 45.5452 | 9.788 | 4.653 | 0.000 | 25.190 65.900 |
Omnibus: | 2.011 | Durbin-Watson: | 2.297 |
Prob(Omnibus): | 0.366 | Jarque-Bera (JB): | 1.104 |
Skew: | 0.124 | Prob(JB): | 0.576 |
Kurtosis: | 1.956 | Cond. No. | 212. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.557 | 0.136 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.573 |
Model: | OLS | Adj. R-squared: | 0.457 |
Method: | Least Squares | F-statistic: | 4.928 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0208 |
Time: | 22:47:16 | Log-Likelihood: | -68.911 |
No. Observations: | 15 | AIC: | 145.8 |
Df Residuals: | 11 | BIC: | 148.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -282.3209 | 200.313 | -1.409 | 0.186 | -723.207 158.565 |
C(dose)[T.1] | 302.5508 | 316.312 | 0.956 | 0.359 | -393.648 998.750 |
expression | 40.8035 | 23.337 | 1.748 | 0.108 | -10.561 92.168 |
expression:C(dose)[T.1] | -30.1747 | 35.666 | -0.846 | 0.416 | -108.674 48.325 |
Omnibus: | 2.245 | Durbin-Watson: | 0.992 |
Prob(Omnibus): | 0.325 | Jarque-Bera (JB): | 1.478 |
Skew: | -0.752 | Prob(JB): | 0.478 |
Kurtosis: | 2.677 | Cond. No. | 506. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.546 |
Model: | OLS | Adj. R-squared: | 0.470 |
Method: | Least Squares | F-statistic: | 7.204 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00880 |
Time: | 22:47:16 | Log-Likelihood: | -69.384 |
No. Observations: | 15 | AIC: | 144.8 |
Df Residuals: | 12 | BIC: | 146.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -171.5829 | 149.830 | -1.145 | 0.274 | -498.034 154.868 |
C(dose)[T.1] | 35.3186 | 16.719 | 2.112 | 0.056 | -1.110 71.747 |
expression | 27.8843 | 17.437 | 1.599 | 0.136 | -10.109 65.877 |
Omnibus: | 1.818 | Durbin-Watson: | 0.938 |
Prob(Omnibus): | 0.403 | Jarque-Bera (JB): | 1.387 |
Skew: | -0.588 | Prob(JB): | 0.500 |
Kurtosis: | 2.085 | Cond. No. | 189. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:47:16 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.377 |
Model: | OLS | Adj. R-squared: | 0.329 |
Method: | Least Squares | F-statistic: | 7.854 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0150 |
Time: | 22:47:16 | Log-Likelihood: | -71.755 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 13 | BIC: | 148.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -321.7122 | 148.432 | -2.167 | 0.049 | -642.379 -1.045 |
expression | 47.0046 | 16.772 | 2.803 | 0.015 | 10.771 83.238 |
Omnibus: | 2.349 | Durbin-Watson: | 1.528 |
Prob(Omnibus): | 0.309 | Jarque-Bera (JB): | 1.267 |
Skew: | 0.388 | Prob(JB): | 0.531 |
Kurtosis: | 1.807 | Cond. No. | 166. |