AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.002 | 0.961 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.655 |
Model: | OLS | Adj. R-squared: | 0.601 |
Method: | Least Squares | F-statistic: | 12.04 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000121 |
Time: | 04:31:49 | Log-Likelihood: | -100.86 |
No. Observations: | 23 | AIC: | 209.7 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 93.2225 | 89.528 | 1.041 | 0.311 | -94.162 280.607 |
C(dose)[T.1] | -11.2082 | 111.077 | -0.101 | 0.921 | -243.694 221.278 |
expression | -7.7303 | 17.697 | -0.437 | 0.667 | -44.771 29.310 |
expression:C(dose)[T.1] | 12.9407 | 22.170 | 0.584 | 0.566 | -33.461 59.342 |
Omnibus: | 1.027 | Durbin-Watson: | 1.829 |
Prob(Omnibus): | 0.598 | Jarque-Bera (JB): | 0.788 |
Skew: | -0.037 | Prob(JB): | 0.674 |
Kurtosis: | 2.096 | Cond. No. | 178. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.83e-05 |
Time: | 04:31:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 51.6059 | 53.249 | 0.969 | 0.344 | -59.469 162.681 |
C(dose)[T.1] | 53.4129 | 8.903 | 5.999 | 0.000 | 34.841 71.985 |
expression | 0.5157 | 10.482 | 0.049 | 0.961 | -21.350 22.381 |
Omnibus: | 0.322 | Durbin-Watson: | 1.878 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.062 | Prob(JB): | 0.784 |
Kurtosis: | 2.299 | Cond. No. | 63.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:31:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.018 |
Model: | OLS | Adj. R-squared: | -0.029 |
Method: | Least Squares | F-statistic: | 0.3776 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.545 |
Time: | 04:31:49 | Log-Likelihood: | -112.90 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 131.2724 | 84.199 | 1.559 | 0.134 | -43.830 306.375 |
expression | -10.3593 | 16.858 | -0.615 | 0.545 | -45.417 24.698 |
Omnibus: | 1.565 | Durbin-Watson: | 2.648 |
Prob(Omnibus): | 0.457 | Jarque-Bera (JB): | 1.229 |
Skew: | 0.365 | Prob(JB): | 0.541 |
Kurtosis: | 2.134 | Cond. No. | 61.1 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
14.662 | 0.002 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.769 |
Model: | OLS | Adj. R-squared: | 0.706 |
Method: | Least Squares | F-statistic: | 12.21 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000798 |
Time: | 04:31:49 | Log-Likelihood: | -64.307 |
No. Observations: | 15 | AIC: | 136.6 |
Df Residuals: | 11 | BIC: | 139.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -214.5813 | 148.215 | -1.448 | 0.176 | -540.800 111.637 |
C(dose)[T.1] | -126.3461 | 200.053 | -0.632 | 0.541 | -566.661 313.969 |
expression | 41.2708 | 21.661 | 1.905 | 0.083 | -6.404 88.946 |
expression:C(dose)[T.1] | 26.6319 | 29.422 | 0.905 | 0.385 | -38.125 91.389 |
Omnibus: | 1.296 | Durbin-Watson: | 1.422 |
Prob(Omnibus): | 0.523 | Jarque-Bera (JB): | 0.584 |
Skew: | -0.482 | Prob(JB): | 0.747 |
Kurtosis: | 2.925 | Cond. No. | 354. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.752 |
Model: | OLS | Adj. R-squared: | 0.711 |
Method: | Least Squares | F-statistic: | 18.18 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000233 |
Time: | 04:31:49 | Log-Likelihood: | -64.846 |
No. Observations: | 15 | AIC: | 135.7 |
Df Residuals: | 12 | BIC: | 137.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -313.2169 | 99.708 | -3.141 | 0.009 | -530.461 -95.972 |
C(dose)[T.1] | 54.4774 | 10.649 | 5.116 | 0.000 | 31.275 77.680 |
expression | 55.7056 | 14.548 | 3.829 | 0.002 | 24.008 87.403 |
Omnibus: | 0.396 | Durbin-Watson: | 1.735 |
Prob(Omnibus): | 0.820 | Jarque-Bera (JB): | 0.484 |
Skew: | -0.297 | Prob(JB): | 0.785 |
Kurtosis: | 2.350 | Cond. No. | 132. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:31:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.211 |
Model: | OLS | Adj. R-squared: | 0.150 |
Method: | Least Squares | F-statistic: | 3.473 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0851 |
Time: | 04:31:49 | Log-Likelihood: | -73.524 |
No. Observations: | 15 | AIC: | 151.0 |
Df Residuals: | 13 | BIC: | 152.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -218.7880 | 167.898 | -1.303 | 0.215 | -581.510 143.934 |
expression | 46.0671 | 24.718 | 1.864 | 0.085 | -7.334 99.468 |
Omnibus: | 1.701 | Durbin-Watson: | 2.136 |
Prob(Omnibus): | 0.427 | Jarque-Bera (JB): | 0.920 |
Skew: | 0.155 | Prob(JB): | 0.631 |
Kurtosis: | 1.827 | Cond. No. | 129. |