AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.340 0.261 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.672
Model: OLS Adj. R-squared: 0.620
Method: Least Squares F-statistic: 12.96
Date: Thu, 21 Nov 2024 Prob (F-statistic): 7.68e-05
Time: 05:04:03 Log-Likelihood: -100.29
No. Observations: 23 AIC: 208.6
Df Residuals: 19 BIC: 213.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 199.1921 139.743 1.425 0.170 -93.293 491.677
C(dose)[T.1] -1.4988 232.523 -0.006 0.995 -488.175 485.177
expression -20.3641 19.610 -1.038 0.312 -61.408 20.680
expression:C(dose)[T.1] 6.7087 34.295 0.196 0.847 -65.072 78.489
Omnibus: 1.152 Durbin-Watson: 2.039
Prob(Omnibus): 0.562 Jarque-Bera (JB): 0.876
Skew: -0.157 Prob(JB): 0.645
Kurtosis: 2.097 Cond. No. 452.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.671
Model: OLS Adj. R-squared: 0.638
Method: Least Squares F-statistic: 20.40
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.48e-05
Time: 05:04:03 Log-Likelihood: -100.32
No. Observations: 23 AIC: 206.6
Df Residuals: 20 BIC: 210.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 183.5761 111.905 1.640 0.117 -49.853 417.005
C(dose)[T.1] 43.9250 11.755 3.737 0.001 19.404 68.446
expression -18.1707 15.696 -1.158 0.261 -50.913 14.571
Omnibus: 1.189 Durbin-Watson: 2.048
Prob(Omnibus): 0.552 Jarque-Bera (JB): 0.876
Skew: -0.135 Prob(JB): 0.645
Kurtosis: 2.083 Cond. No. 186.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:04:03 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.441
Model: OLS Adj. R-squared: 0.415
Method: Least Squares F-statistic: 16.60
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000544
Time: 05:04:03 Log-Likelihood: -106.41
No. Observations: 23 AIC: 216.8
Df Residuals: 21 BIC: 219.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 483.3469 99.216 4.872 0.000 277.015 689.679
expression -58.7368 14.417 -4.074 0.001 -88.718 -28.755
Omnibus: 0.619 Durbin-Watson: 2.074
Prob(Omnibus): 0.734 Jarque-Bera (JB): 0.666
Skew: 0.170 Prob(JB): 0.717
Kurtosis: 2.239 Cond. No. 129.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.263 0.158 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.560
Model: OLS Adj. R-squared: 0.439
Method: Least Squares F-statistic: 4.657
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0246
Time: 05:04:03 Log-Likelihood: -69.151
No. Observations: 15 AIC: 146.3
Df Residuals: 11 BIC: 149.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 102.1839 244.051 0.419 0.683 -434.968 639.336
C(dose)[T.1] 255.7888 284.399 0.899 0.388 -370.168 881.746
expression -5.4199 38.022 -0.143 0.889 -89.105 78.265
expression:C(dose)[T.1] -34.2636 44.938 -0.762 0.462 -133.170 64.643
Omnibus: 1.597 Durbin-Watson: 0.642
Prob(Omnibus): 0.450 Jarque-Bera (JB): 1.153
Skew: -0.455 Prob(JB): 0.562
Kurtosis: 1.991 Cond. No. 363.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.536
Model: OLS Adj. R-squared: 0.459
Method: Least Squares F-statistic: 6.937
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00995
Time: 05:04:03 Log-Likelihood: -69.537
No. Observations: 15 AIC: 145.1
Df Residuals: 12 BIC: 147.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 259.4760 128.105 2.025 0.066 -19.642 538.594
C(dose)[T.1] 39.2928 15.868 2.476 0.029 4.720 73.865
expression -29.9489 19.910 -1.504 0.158 -73.328 13.431
Omnibus: 2.851 Durbin-Watson: 0.556
Prob(Omnibus): 0.240 Jarque-Bera (JB): 1.515
Skew: -0.485 Prob(JB): 0.469
Kurtosis: 1.783 Cond. No. 114.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:04:03 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.299
Model: OLS Adj. R-squared: 0.245
Method: Least Squares F-statistic: 5.551
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0348
Time: 05:04:03 Log-Likelihood: -72.633
No. Observations: 15 AIC: 149.3
Df Residuals: 13 BIC: 150.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 408.0021 133.686 3.052 0.009 119.192 696.812
expression -50.4055 21.394 -2.356 0.035 -96.624 -4.187
Omnibus: 0.340 Durbin-Watson: 1.220
Prob(Omnibus): 0.844 Jarque-Bera (JB): 0.479
Skew: 0.149 Prob(JB): 0.787
Kurtosis: 2.176 Cond. No. 101.