AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.411 | 0.136 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.723 |
Model: | OLS | Adj. R-squared: | 0.679 |
Method: | Least Squares | F-statistic: | 16.54 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.58e-05 |
Time: | 04:18:31 | Log-Likelihood: | -98.339 |
No. Observations: | 23 | AIC: | 204.7 |
Df Residuals: | 19 | BIC: | 209.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 112.1782 | 95.143 | 1.179 | 0.253 | -86.959 311.316 |
C(dose)[T.1] | 347.7582 | 188.360 | 1.846 | 0.080 | -46.484 742.000 |
expression | -6.8171 | 11.170 | -0.610 | 0.549 | -30.196 16.561 |
expression:C(dose)[T.1] | -35.3687 | 22.428 | -1.577 | 0.131 | -82.311 11.574 |
Omnibus: | 3.270 | Durbin-Watson: | 1.833 |
Prob(Omnibus): | 0.195 | Jarque-Bera (JB): | 1.822 |
Skew: | 0.660 | Prob(JB): | 0.402 |
Kurtosis: | 3.399 | Cond. No. | 473. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.687 |
Model: | OLS | Adj. R-squared: | 0.655 |
Method: | Least Squares | F-statistic: | 21.93 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.08e-06 |
Time: | 04:18:31 | Log-Likelihood: | -99.754 |
No. Observations: | 23 | AIC: | 205.5 |
Df Residuals: | 20 | BIC: | 208.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 186.7750 | 85.564 | 2.183 | 0.041 | 8.291 365.259 |
C(dose)[T.1] | 50.9939 | 8.421 | 6.056 | 0.000 | 33.428 68.560 |
expression | -15.5895 | 10.040 | -1.553 | 0.136 | -36.532 5.353 |
Omnibus: | 1.333 | Durbin-Watson: | 1.737 |
Prob(Omnibus): | 0.513 | Jarque-Bera (JB): | 0.573 |
Skew: | 0.380 | Prob(JB): | 0.751 |
Kurtosis: | 3.140 | Cond. No. | 177. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:18:31 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.113 |
Model: | OLS | Adj. R-squared: | 0.070 |
Method: | Least Squares | F-statistic: | 2.664 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.118 |
Time: | 04:18:31 | Log-Likelihood: | -111.73 |
No. Observations: | 23 | AIC: | 227.5 |
Df Residuals: | 21 | BIC: | 229.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 303.0225 | 136.976 | 2.212 | 0.038 | 18.164 587.881 |
expression | -26.4839 | 16.225 | -1.632 | 0.118 | -60.226 7.259 |
Omnibus: | 2.877 | Durbin-Watson: | 2.127 |
Prob(Omnibus): | 0.237 | Jarque-Bera (JB): | 1.341 |
Skew: | 0.178 | Prob(JB): | 0.511 |
Kurtosis: | 1.872 | Cond. No. | 172. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.010 | 0.922 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.497 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 3.627 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0486 |
Time: | 04:18:31 | Log-Likelihood: | -70.142 |
No. Observations: | 15 | AIC: | 148.3 |
Df Residuals: | 11 | BIC: | 151.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -20.3698 | 222.634 | -0.091 | 0.929 | -510.383 469.644 |
C(dose)[T.1] | 546.8439 | 484.822 | 1.128 | 0.283 | -520.241 1613.929 |
expression | 10.1933 | 25.813 | 0.395 | 0.700 | -46.621 67.008 |
expression:C(dose)[T.1] | -56.1264 | 54.723 | -1.026 | 0.327 | -176.572 64.319 |
Omnibus: | 1.685 | Durbin-Watson: | 0.881 |
Prob(Omnibus): | 0.431 | Jarque-Bera (JB): | 1.279 |
Skew: | -0.658 | Prob(JB): | 0.528 |
Kurtosis: | 2.439 | Cond. No. | 661. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.894 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0279 |
Time: | 04:18:31 | Log-Likelihood: | -70.827 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 87.1970 | 196.808 | 0.443 | 0.666 | -341.610 516.004 |
C(dose)[T.1] | 49.9066 | 17.244 | 2.894 | 0.013 | 12.335 87.478 |
expression | -2.2951 | 22.810 | -0.101 | 0.922 | -51.994 47.404 |
Omnibus: | 2.808 | Durbin-Watson: | 0.828 |
Prob(Omnibus): | 0.246 | Jarque-Bera (JB): | 1.919 |
Skew: | -0.857 | Prob(JB): | 0.383 |
Kurtosis: | 2.639 | Cond. No. | 224. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:18:32 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.065 |
Model: | OLS | Adj. R-squared: | -0.007 |
Method: | Least Squares | F-statistic: | 0.9007 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.360 |
Time: | 04:18:32 | Log-Likelihood: | -74.798 |
No. Observations: | 15 | AIC: | 153.6 |
Df Residuals: | 13 | BIC: | 155.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -123.4064 | 228.934 | -0.539 | 0.599 | -617.988 371.175 |
expression | 24.7282 | 26.055 | 0.949 | 0.360 | -31.561 81.017 |
Omnibus: | 2.041 | Durbin-Watson: | 1.264 |
Prob(Omnibus): | 0.360 | Jarque-Bera (JB): | 1.002 |
Skew: | 0.172 | Prob(JB): | 0.606 |
Kurtosis: | 1.782 | Cond. No. | 207. |