AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.027 0.870 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.600
Method: Least Squares F-statistic: 11.99
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000124
Time: 05:12:52 Log-Likelihood: -100.89
No. Observations: 23 AIC: 209.8
Df Residuals: 19 BIC: 214.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 31.8366 130.632 0.244 0.810 -241.580 305.253
C(dose)[T.1] 164.5320 218.616 0.753 0.461 -293.036 622.100
expression 3.3233 19.384 0.171 0.866 -37.247 43.894
expression:C(dose)[T.1] -16.6919 32.724 -0.510 0.616 -85.184 51.800
Omnibus: 0.565 Durbin-Watson: 1.878
Prob(Omnibus): 0.754 Jarque-Bera (JB): 0.610
Skew: 0.054 Prob(JB): 0.737
Kurtosis: 2.210 Cond. No. 408.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.80e-05
Time: 05:12:52 Log-Likelihood: -101.05
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 71.2620 103.346 0.690 0.498 -144.314 286.838
C(dose)[T.1] 53.1153 8.866 5.991 0.000 34.621 71.609
expression -2.5333 15.326 -0.165 0.870 -34.502 29.435
Omnibus: 0.303 Durbin-Watson: 1.896
Prob(Omnibus): 0.859 Jarque-Bera (JB): 0.475
Skew: 0.083 Prob(JB): 0.789
Kurtosis: 2.316 Cond. No. 162.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:12:52 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.021
Model: OLS Adj. R-squared: -0.026
Method: Least Squares F-statistic: 0.4419
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.513
Time: 05:12:52 Log-Likelihood: -112.87
No. Observations: 23 AIC: 229.7
Df Residuals: 21 BIC: 232.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 189.6208 165.490 1.146 0.265 -154.534 533.775
expression -16.4284 24.714 -0.665 0.513 -67.825 34.968
Omnibus: 3.602 Durbin-Watson: 2.386
Prob(Omnibus): 0.165 Jarque-Bera (JB): 1.597
Skew: 0.270 Prob(JB): 0.450
Kurtosis: 1.828 Cond. No. 159.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.899 0.362 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.496
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 3.614
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0491
Time: 05:12:52 Log-Likelihood: -70.155
No. Observations: 15 AIC: 148.3
Df Residuals: 11 BIC: 151.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -130.2585 216.883 -0.601 0.560 -607.616 347.099
C(dose)[T.1] 174.0939 269.679 0.646 0.532 -419.465 767.653
expression 25.8929 28.367 0.913 0.381 -36.543 88.329
expression:C(dose)[T.1] -16.0271 35.700 -0.449 0.662 -94.603 62.549
Omnibus: 1.492 Durbin-Watson: 0.995
Prob(Omnibus): 0.474 Jarque-Bera (JB): 1.214
Skew: -0.594 Prob(JB): 0.545
Kurtosis: 2.273 Cond. No. 371.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.487
Model: OLS Adj. R-squared: 0.402
Method: Least Squares F-statistic: 5.700
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0182
Time: 05:12:52 Log-Likelihood: -70.291
No. Observations: 15 AIC: 146.6
Df Residuals: 12 BIC: 148.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -52.9999 127.526 -0.416 0.685 -330.855 224.855
C(dose)[T.1] 53.2484 15.772 3.376 0.006 18.885 87.612
expression 15.7737 16.640 0.948 0.362 -20.482 52.029
Omnibus: 1.655 Durbin-Watson: 0.961
Prob(Omnibus): 0.437 Jarque-Bera (JB): 1.310
Skew: -0.584 Prob(JB): 0.519
Kurtosis: 2.145 Cond. No. 129.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:12:52 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.077
Method: Least Squares F-statistic: 0.0006496
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.980
Time: 05:12:52 Log-Likelihood: -75.300
No. Observations: 15 AIC: 154.6
Df Residuals: 13 BIC: 156.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 89.5602 161.438 0.555 0.588 -259.205 438.326
expression 0.5477 21.489 0.025 0.980 -45.876 46.971
Omnibus: 0.639 Durbin-Watson: 1.625
Prob(Omnibus): 0.726 Jarque-Bera (JB): 0.595
Skew: 0.052 Prob(JB): 0.743
Kurtosis: 2.030 Cond. No. 121.