AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.188 | 0.669 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.597 |
Method: | Least Squares | F-statistic: | 11.88 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000131 |
Time: | 03:41:08 | Log-Likelihood: | -100.95 |
No. Observations: | 23 | AIC: | 209.9 |
Df Residuals: | 19 | BIC: | 214.5 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 109.8872 | 149.786 | 0.734 | 0.472 | -203.618 423.393 |
C(dose)[T.1] | 41.4873 | 262.362 | 0.158 | 0.876 | -507.642 590.617 |
expression | -6.9037 | 18.556 | -0.372 | 0.714 | -45.743 31.935 |
expression:C(dose)[T.1] | 1.1028 | 34.005 | 0.032 | 0.974 | -70.071 72.277 |
Omnibus: | 0.514 | Durbin-Watson: | 1.853 |
Prob(Omnibus): | 0.774 | Jarque-Bera (JB): | 0.590 |
Skew: | 0.080 | Prob(JB): | 0.745 |
Kurtosis: | 2.232 | Cond. No. | 555. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 18.76 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.58e-05 |
Time: | 03:41:08 | Log-Likelihood: | -100.95 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 107.2386 | 122.388 | 0.876 | 0.391 | -148.059 362.536 |
C(dose)[T.1] | 49.9872 | 11.654 | 4.289 | 0.000 | 25.677 74.297 |
expression | -6.5753 | 15.157 | -0.434 | 0.669 | -38.192 25.041 |
Omnibus: | 0.522 | Durbin-Watson: | 1.849 |
Prob(Omnibus): | 0.770 | Jarque-Bera (JB): | 0.594 |
Skew: | 0.080 | Prob(JB): | 0.743 |
Kurtosis: | 2.229 | Cond. No. | 224. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:41:08 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.333 |
Model: | OLS | Adj. R-squared: | 0.301 |
Method: | Least Squares | F-statistic: | 10.46 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00397 |
Time: | 03:41:09 | Log-Likelihood: | -108.46 |
No. Observations: | 23 | AIC: | 220.9 |
Df Residuals: | 21 | BIC: | 223.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 468.0475 | 120.208 | 3.894 | 0.001 | 218.062 718.033 |
expression | -49.6498 | 15.351 | -3.234 | 0.004 | -81.573 -17.726 |
Omnibus: | 0.084 | Durbin-Watson: | 2.009 |
Prob(Omnibus): | 0.959 | Jarque-Bera (JB): | 0.248 |
Skew: | -0.118 | Prob(JB): | 0.883 |
Kurtosis: | 2.549 | Cond. No. | 162. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.054 | 0.820 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.452 |
Model: | OLS | Adj. R-squared: | 0.302 |
Method: | Least Squares | F-statistic: | 3.019 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0757 |
Time: | 03:41:09 | Log-Likelihood: | -70.795 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 11 | BIC: | 152.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -23.4016 | 424.763 | -0.055 | 0.957 | -958.299 911.496 |
C(dose)[T.1] | 97.7971 | 590.336 | 0.166 | 0.871 | -1201.523 1397.117 |
expression | 10.1523 | 47.458 | 0.214 | 0.835 | -94.302 114.607 |
expression:C(dose)[T.1] | -5.3749 | 66.346 | -0.081 | 0.937 | -151.401 140.651 |
Omnibus: | 3.295 | Durbin-Watson: | 0.885 |
Prob(Omnibus): | 0.193 | Jarque-Bera (JB): | 2.146 |
Skew: | -0.919 | Prob(JB): | 0.342 |
Kurtosis: | 2.771 | Cond. No. | 868. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.451 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 4.934 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0273 |
Time: | 03:41:09 | Log-Likelihood: | -70.799 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1.2037 | 284.391 | 0.004 | 0.997 | -618.432 620.840 |
C(dose)[T.1] | 49.9913 | 16.070 | 3.111 | 0.009 | 14.977 85.005 |
expression | 7.4021 | 31.761 | 0.233 | 0.820 | -61.800 76.604 |
Omnibus: | 3.380 | Durbin-Watson: | 0.857 |
Prob(Omnibus): | 0.185 | Jarque-Bera (JB): | 2.165 |
Skew: | -0.926 | Prob(JB): | 0.339 |
Kurtosis: | 2.812 | Cond. No. | 327. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:41:09 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.009 |
Model: | OLS | Adj. R-squared: | -0.068 |
Method: | Least Squares | F-statistic: | 0.1146 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.740 |
Time: | 03:41:09 | Log-Likelihood: | -75.234 |
No. Observations: | 15 | AIC: | 154.5 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 214.2690 | 356.427 | 0.601 | 0.558 | -555.744 984.282 |
expression | -13.5669 | 40.079 | -0.339 | 0.740 | -100.153 73.019 |
Omnibus: | 0.800 | Durbin-Watson: | 1.589 |
Prob(Omnibus): | 0.670 | Jarque-Bera (JB): | 0.654 |
Skew: | 0.084 | Prob(JB): | 0.721 |
Kurtosis: | 1.991 | Cond. No. | 317. |