AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.013 0.909 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.687
Model: OLS Adj. R-squared: 0.638
Method: Least Squares F-statistic: 13.93
Date: Thu, 03 Apr 2025 Prob (F-statistic): 4.88e-05
Time: 22:50:42 Log-Likelihood: -99.733
No. Observations: 23 AIC: 207.5
Df Residuals: 19 BIC: 212.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -32.2360 109.275 -0.295 0.771 -260.951 196.479
C(dose)[T.1] 342.7123 190.185 1.802 0.087 -55.350 740.775
expression 13.1253 16.568 0.792 0.438 -21.552 47.802
expression:C(dose)[T.1] -43.1471 28.354 -1.522 0.145 -102.493 16.199
Omnibus: 0.336 Durbin-Watson: 1.977
Prob(Omnibus): 0.845 Jarque-Bera (JB): 0.455
Skew: 0.235 Prob(JB): 0.796
Kurtosis: 2.496 Cond. No. 372.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.614
Method: Least Squares F-statistic: 18.51
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.81e-05
Time: 22:50:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 208.1
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 64.7858 91.618 0.707 0.488 -126.326 255.898
C(dose)[T.1] 53.6156 9.091 5.897 0.000 34.652 72.580
expression -1.6060 13.880 -0.116 0.909 -30.560 27.348
Omnibus: 0.368 Durbin-Watson: 1.858
Prob(Omnibus): 0.832 Jarque-Bera (JB): 0.512
Skew: 0.067 Prob(JB): 0.774
Kurtosis: 2.281 Cond. No. 143.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:50:42 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.039
Model: OLS Adj. R-squared: -0.006
Method: Least Squares F-statistic: 0.8615
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.364
Time: 22:50:42 Log-Likelihood: -112.64
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -54.0976 144.347 -0.375 0.712 -354.284 246.089
expression 20.0652 21.619 0.928 0.364 -24.893 65.023
Omnibus: 2.601 Durbin-Watson: 2.552
Prob(Omnibus): 0.272 Jarque-Bera (JB): 1.596
Skew: 0.393 Prob(JB): 0.450
Kurtosis: 1.976 Cond. No. 139.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.413 0.533 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.470
Model: OLS Adj. R-squared: 0.326
Method: Least Squares F-statistic: 3.257
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0634
Time: 22:50:42 Log-Likelihood: -70.532
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 249.3837 432.749 0.576 0.576 -703.090 1201.858
C(dose)[T.1] -68.9635 449.792 -0.153 0.881 -1058.950 921.023
expression -28.6813 68.188 -0.421 0.682 -178.763 121.400
expression:C(dose)[T.1] 18.6314 70.851 0.263 0.797 -137.311 174.574
Omnibus: 4.988 Durbin-Watson: 0.676
Prob(Omnibus): 0.083 Jarque-Bera (JB): 2.868
Skew: -1.062 Prob(JB): 0.238
Kurtosis: 3.274 Cond. No. 583.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.467
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 5.259
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0229
Time: 22:50:43 Log-Likelihood: -70.579
No. Observations: 15 AIC: 147.2
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 139.9039 113.403 1.234 0.241 -107.180 386.987
C(dose)[T.1] 49.2399 15.476 3.182 0.008 15.521 82.959
expression -11.4242 17.786 -0.642 0.533 -50.178 27.329
Omnibus: 5.768 Durbin-Watson: 0.733
Prob(Omnibus): 0.056 Jarque-Bera (JB): 3.310
Skew: -1.130 Prob(JB): 0.191
Kurtosis: 3.438 Cond. No. 96.0

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:50:43 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.018
Model: OLS Adj. R-squared: -0.058
Method: Least Squares F-statistic: 0.2320
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.638
Time: 22:50:43 Log-Likelihood: -75.167
No. Observations: 15 AIC: 154.3
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 164.5934 147.590 1.115 0.285 -154.255 483.442
expression -11.1765 23.203 -0.482 0.638 -61.303 38.950
Omnibus: 0.942 Durbin-Watson: 1.659
Prob(Omnibus): 0.625 Jarque-Bera (JB): 0.695
Skew: -0.061 Prob(JB): 0.707
Kurtosis: 1.953 Cond. No. 95.5