AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.733 0.203 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.724
Model: OLS Adj. R-squared: 0.680
Method: Least Squares F-statistic: 16.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.55e-05
Time: 04:27:02 Log-Likelihood: -98.316
No. Observations: 23 AIC: 204.6
Df Residuals: 19 BIC: 209.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 25.1507 265.329 0.095 0.925 -530.190 580.492
C(dose)[T.1] 808.9937 416.727 1.941 0.067 -63.225 1681.212
expression 2.7587 25.185 0.110 0.914 -49.953 55.470
expression:C(dose)[T.1] -69.3307 38.740 -1.790 0.089 -150.415 11.754
Omnibus: 0.235 Durbin-Watson: 1.639
Prob(Omnibus): 0.889 Jarque-Bera (JB): 0.422
Skew: 0.145 Prob(JB): 0.810
Kurtosis: 2.403 Cond. No. 1.42e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.677
Model: OLS Adj. R-squared: 0.645
Method: Least Squares F-statistic: 20.96
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.23e-05
Time: 04:27:02 Log-Likelihood: -100.11
No. Observations: 23 AIC: 206.2
Df Residuals: 20 BIC: 209.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 333.7721 212.460 1.571 0.132 -109.411 776.955
C(dose)[T.1] 63.4588 11.397 5.568 0.000 39.684 87.233
expression -26.5414 20.163 -1.316 0.203 -68.601 15.518
Omnibus: 2.426 Durbin-Watson: 1.762
Prob(Omnibus): 0.297 Jarque-Bera (JB): 1.295
Skew: 0.228 Prob(JB): 0.523
Kurtosis: 1.930 Cond. No. 548.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:27:02 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.176
Model: OLS Adj. R-squared: 0.137
Method: Least Squares F-statistic: 4.499
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0460
Time: 04:27:02 Log-Likelihood: -110.87
No. Observations: 23 AIC: 225.7
Df Residuals: 21 BIC: 228.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -447.4482 248.621 -1.800 0.086 -964.483 69.587
expression 49.1965 23.194 2.121 0.046 0.962 97.431
Omnibus: 0.536 Durbin-Watson: 2.336
Prob(Omnibus): 0.765 Jarque-Bera (JB): 0.451
Skew: 0.306 Prob(JB): 0.798
Kurtosis: 2.691 Cond. No. 410.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.529 0.240 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.511
Model: OLS Adj. R-squared: 0.378
Method: Least Squares F-statistic: 3.833
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0422
Time: 04:27:02 Log-Likelihood: -69.934
No. Observations: 15 AIC: 147.9
Df Residuals: 11 BIC: 150.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -523.3024 606.443 -0.863 0.407 -1858.074 811.469
C(dose)[T.1] 47.5616 1069.418 0.044 0.965 -2306.213 2401.336
expression 56.1455 57.629 0.974 0.351 -70.695 182.985
expression:C(dose)[T.1] -0.5264 100.798 -0.005 0.996 -222.381 221.328
Omnibus: 2.079 Durbin-Watson: 0.710
Prob(Omnibus): 0.354 Jarque-Bera (JB): 1.358
Skew: -0.502 Prob(JB): 0.507
Kurtosis: 1.921 Cond. No. 1.83e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.511
Model: OLS Adj. R-squared: 0.430
Method: Least Squares F-statistic: 6.272
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0137
Time: 04:27:02 Log-Likelihood: -69.934
No. Observations: 15 AIC: 145.9
Df Residuals: 12 BIC: 148.0
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -521.4921 476.411 -1.095 0.295 -1559.503 516.519
C(dose)[T.1] 41.9776 15.932 2.635 0.022 7.265 76.690
expression 55.9734 45.268 1.236 0.240 -42.658 154.605
Omnibus: 2.087 Durbin-Watson: 0.710
Prob(Omnibus): 0.352 Jarque-Bera (JB): 1.358
Skew: -0.501 Prob(JB): 0.507
Kurtosis: 1.918 Cond. No. 689.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:27:02 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.228
Model: OLS Adj. R-squared: 0.169
Method: Least Squares F-statistic: 3.844
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0717
Time: 04:27:02 Log-Likelihood: -73.357
No. Observations: 15 AIC: 150.7
Df Residuals: 13 BIC: 152.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -961.9799 538.506 -1.786 0.097 -2125.352 201.392
expression 99.6813 50.842 1.961 0.072 -10.157 209.520
Omnibus: 0.791 Durbin-Watson: 1.447
Prob(Omnibus): 0.673 Jarque-Bera (JB): 0.700
Skew: 0.229 Prob(JB): 0.705
Kurtosis: 2.046 Cond. No. 645.