AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.381 | 0.544 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.676 |
Model: | OLS | Adj. R-squared: | 0.624 |
Method: | Least Squares | F-statistic: | 13.19 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.88e-05 |
Time: | 04:55:53 | Log-Likelihood: | -100.16 |
No. Observations: | 23 | AIC: | 208.3 |
Df Residuals: | 19 | BIC: | 212.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 63.6620 | 118.649 | 0.537 | 0.598 | -184.673 311.997 |
C(dose)[T.1] | 346.9516 | 270.945 | 1.281 | 0.216 | -220.144 914.047 |
expression | -1.1893 | 14.907 | -0.080 | 0.937 | -32.391 30.012 |
expression:C(dose)[T.1] | -36.6109 | 33.833 | -1.082 | 0.293 | -107.423 34.201 |
Omnibus: | 0.550 | Durbin-Watson: | 1.578 |
Prob(Omnibus): | 0.760 | Jarque-Bera (JB): | 0.609 |
Skew: | 0.307 | Prob(JB): | 0.738 |
Kurtosis: | 2.492 | Cond. No. | 590. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.621 |
Method: | Least Squares | F-statistic: | 19.04 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.35e-05 |
Time: | 04:55:53 | Log-Likelihood: | -100.85 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 20 | BIC: | 211.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 120.1623 | 106.997 | 1.123 | 0.275 | -103.030 343.355 |
C(dose)[T.1] | 53.9069 | 8.736 | 6.170 | 0.000 | 35.683 72.131 |
expression | -8.2972 | 13.439 | -0.617 | 0.544 | -36.331 19.737 |
Omnibus: | 0.572 | Durbin-Watson: | 1.903 |
Prob(Omnibus): | 0.751 | Jarque-Bera (JB): | 0.630 |
Skew: | 0.132 | Prob(JB): | 0.730 |
Kurtosis: | 2.233 | Cond. No. | 200. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:55:53 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.048 |
Method: | Least Squares | F-statistic: | 0.0004331 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.984 |
Time: | 04:55:53 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 76.0256 | 177.534 | 0.428 | 0.673 | -293.177 445.228 |
expression | 0.4625 | 22.224 | 0.021 | 0.984 | -45.755 46.680 |
Omnibus: | 3.269 | Durbin-Watson: | 2.491 |
Prob(Omnibus): | 0.195 | Jarque-Bera (JB): | 1.563 |
Skew: | 0.290 | Prob(JB): | 0.458 |
Kurtosis: | 1.862 | Cond. No. | 200. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.384 | 0.547 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.482 |
Model: | OLS | Adj. R-squared: | 0.341 |
Method: | Least Squares | F-statistic: | 3.413 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0566 |
Time: | 04:55:53 | Log-Likelihood: | -70.366 |
No. Observations: | 15 | AIC: | 148.7 |
Df Residuals: | 11 | BIC: | 151.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 142.2033 | 257.367 | 0.553 | 0.592 | -424.257 708.663 |
C(dose)[T.1] | 454.5755 | 660.901 | 0.688 | 0.506 | -1000.058 1909.209 |
expression | -11.3906 | 39.165 | -0.291 | 0.777 | -97.592 74.811 |
expression:C(dose)[T.1] | -53.3779 | 90.962 | -0.587 | 0.569 | -253.585 146.829 |
Omnibus: | 2.148 | Durbin-Watson: | 1.020 |
Prob(Omnibus): | 0.342 | Jarque-Bera (JB): | 1.567 |
Skew: | -0.628 | Prob(JB): | 0.457 |
Kurtosis: | 2.036 | Cond. No. | 720. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.466 |
Model: | OLS | Adj. R-squared: | 0.377 |
Method: | Least Squares | F-statistic: | 5.233 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0232 |
Time: | 04:55:53 | Log-Likelihood: | -70.597 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 207.1627 | 225.907 | 0.917 | 0.377 | -285.045 699.371 |
C(dose)[T.1] | 67.2632 | 33.031 | 2.036 | 0.064 | -4.705 139.232 |
expression | -21.2859 | 34.370 | -0.619 | 0.547 | -96.171 53.599 |
Omnibus: | 2.276 | Durbin-Watson: | 1.083 |
Prob(Omnibus): | 0.320 | Jarque-Bera (JB): | 1.745 |
Skew: | -0.762 | Prob(JB): | 0.418 |
Kurtosis: | 2.316 | Cond. No. | 212. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:55:53 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.281 |
Model: | OLS | Adj. R-squared: | 0.226 |
Method: | Least Squares | F-statistic: | 5.087 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0420 |
Time: | 04:55:53 | Log-Likelihood: | -72.823 |
No. Observations: | 15 | AIC: | 149.6 |
Df Residuals: | 13 | BIC: | 151.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -190.7118 | 126.376 | -1.509 | 0.155 | -463.732 82.308 |
expression | 40.5254 | 17.967 | 2.255 | 0.042 | 1.709 79.342 |
Omnibus: | 1.383 | Durbin-Watson: | 0.747 |
Prob(Omnibus): | 0.501 | Jarque-Bera (JB): | 1.091 |
Skew: | -0.592 | Prob(JB): | 0.580 |
Kurtosis: | 2.413 | Cond. No. | 105. |