AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.123 0.302 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 12.73
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.60e-05
Time: 03:56:24 Log-Likelihood: -100.43
No. Observations: 23 AIC: 208.9
Df Residuals: 19 BIC: 213.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.9548 68.013 -0.058 0.954 -146.307 138.398
C(dose)[T.1] 56.5063 117.613 0.480 0.636 -189.661 302.674
expression 10.0883 11.750 0.859 0.401 -14.504 34.681
expression:C(dose)[T.1] -0.3894 20.572 -0.019 0.985 -43.446 42.667
Omnibus: 0.179 Durbin-Watson: 1.629
Prob(Omnibus): 0.915 Jarque-Bera (JB): 0.387
Skew: 0.084 Prob(JB): 0.824
Kurtosis: 2.388 Cond. No. 191.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.634
Method: Least Squares F-statistic: 20.09
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.64e-05
Time: 03:56:24 Log-Likelihood: -100.43
No. Observations: 23 AIC: 206.9
Df Residuals: 20 BIC: 210.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -3.2224 54.518 -0.059 0.953 -116.946 110.501
C(dose)[T.1] 54.2861 8.580 6.327 0.000 36.388 72.185
expression 9.9612 9.401 1.060 0.302 -9.648 29.570
Omnibus: 0.184 Durbin-Watson: 1.634
Prob(Omnibus): 0.912 Jarque-Bera (JB): 0.390
Skew: 0.090 Prob(JB): 0.823
Kurtosis: 2.388 Cond. No. 75.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:56:24 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.003
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.05639
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.815
Time: 03:56:24 Log-Likelihood: -113.07
No. Observations: 23 AIC: 230.1
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.2486 90.699 0.642 0.528 -130.369 246.866
expression 3.7534 15.807 0.237 0.815 -29.118 36.625
Omnibus: 2.942 Durbin-Watson: 2.441
Prob(Omnibus): 0.230 Jarque-Bera (JB): 1.518
Skew: 0.304 Prob(JB): 0.468
Kurtosis: 1.898 Cond. No. 74.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.435 0.522 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.469
Model: OLS Adj. R-squared: 0.325
Method: Least Squares F-statistic: 3.245
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0640
Time: 03:56:24 Log-Likelihood: -70.546
No. Observations: 15 AIC: 149.1
Df Residuals: 11 BIC: 151.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -7.2322 225.454 -0.032 0.975 -503.453 488.988
C(dose)[T.1] -20.9074 341.436 -0.061 0.952 -772.402 730.587
expression 13.3280 40.192 0.332 0.746 -75.133 101.789
expression:C(dose)[T.1] 9.9143 57.507 0.172 0.866 -116.658 136.487
Omnibus: 0.896 Durbin-Watson: 0.945
Prob(Omnibus): 0.639 Jarque-Bera (JB): 0.777
Skew: -0.470 Prob(JB): 0.678
Kurtosis: 2.400 Cond. No. 343.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.468
Model: OLS Adj. R-squared: 0.379
Method: Least Squares F-statistic: 5.279
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0227
Time: 03:56:24 Log-Likelihood: -70.566
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.3
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -34.3604 154.794 -0.222 0.828 -371.627 302.906
C(dose)[T.1] 37.8088 23.181 1.631 0.129 -12.699 88.317
expression 18.1708 27.559 0.659 0.522 -41.876 78.217
Omnibus: 1.004 Durbin-Watson: 0.935
Prob(Omnibus): 0.605 Jarque-Bera (JB): 0.861
Skew: -0.496 Prob(JB): 0.650
Kurtosis: 2.373 Cond. No. 124.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:56:24 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.350
Model: OLS Adj. R-squared: 0.300
Method: Least Squares F-statistic: 7.004
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0201
Time: 03:56:24 Log-Likelihood: -72.068
No. Observations: 15 AIC: 148.1
Df Residuals: 13 BIC: 149.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -212.9908 116.164 -1.834 0.090 -463.949 37.967
expression 51.6603 19.521 2.646 0.020 9.489 93.832
Omnibus: 0.658 Durbin-Watson: 1.274
Prob(Omnibus): 0.720 Jarque-Bera (JB): 0.633
Skew: 0.398 Prob(JB): 0.729
Kurtosis: 2.386 Cond. No. 86.8