AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.688 0.417 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.664
Model: OLS Adj. R-squared: 0.611
Method: Least Squares F-statistic: 12.51
Date: Thu, 21 Nov 2024 Prob (F-statistic): 9.59e-05
Time: 03:38:21 Log-Likelihood: -100.57
No. Observations: 23 AIC: 209.1
Df Residuals: 19 BIC: 213.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.1427 70.483 0.626 0.539 -103.381 191.666
C(dose)[T.1] 15.9586 88.183 0.181 0.858 -168.611 200.529
expression 2.2910 15.982 0.143 0.888 -31.161 35.743
expression:C(dose)[T.1] 8.2569 19.805 0.417 0.681 -33.196 49.710
Omnibus: 0.217 Durbin-Watson: 1.888
Prob(Omnibus): 0.897 Jarque-Bera (JB): 0.416
Skew: 0.088 Prob(JB): 0.812
Kurtosis: 2.365 Cond. No. 131.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.661
Model: OLS Adj. R-squared: 0.627
Method: Least Squares F-statistic: 19.48
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.02e-05
Time: 03:38:21 Log-Likelihood: -100.67
No. Observations: 23 AIC: 207.3
Df Residuals: 20 BIC: 210.8
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 20.5185 41.041 0.500 0.623 -65.091 106.128
C(dose)[T.1] 52.5367 8.677 6.055 0.000 34.438 70.636
expression 7.6680 9.242 0.830 0.417 -11.610 26.946
Omnibus: 0.161 Durbin-Watson: 1.855
Prob(Omnibus): 0.923 Jarque-Bera (JB): 0.377
Skew: -0.026 Prob(JB): 0.828
Kurtosis: 2.375 Cond. No. 44.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:38:22 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.039
Model: OLS Adj. R-squared: -0.007
Method: Least Squares F-statistic: 0.8477
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.368
Time: 03:38:22 Log-Likelihood: -112.65
No. Observations: 23 AIC: 229.3
Df Residuals: 21 BIC: 231.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 17.9956 67.411 0.267 0.792 -122.194 158.185
expression 13.8904 15.087 0.921 0.368 -17.485 45.266
Omnibus: 1.245 Durbin-Watson: 2.474
Prob(Omnibus): 0.537 Jarque-Bera (JB): 0.939
Skew: 0.202 Prob(JB): 0.625
Kurtosis: 2.096 Cond. No. 44.7

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.223 0.645 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.578
Model: OLS Adj. R-squared: 0.462
Method: Least Squares F-statistic: 5.015
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0197
Time: 03:38:22 Log-Likelihood: -68.835
No. Observations: 15 AIC: 145.7
Df Residuals: 11 BIC: 148.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 167.1584 66.691 2.506 0.029 20.373 313.944
C(dose)[T.1] -127.2737 100.400 -1.268 0.231 -348.252 93.704
expression -17.5339 11.579 -1.514 0.158 -43.018 7.951
expression:C(dose)[T.1] 32.0193 18.202 1.759 0.106 -8.043 72.081
Omnibus: 1.632 Durbin-Watson: 1.360
Prob(Omnibus): 0.442 Jarque-Bera (JB): 0.422
Skew: -0.378 Prob(JB): 0.810
Kurtosis: 3.322 Cond. No. 102.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.369
Method: Least Squares F-statistic: 5.087
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0251
Time: 03:38:22 Log-Likelihood: -70.695
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 93.4615 56.237 1.662 0.122 -29.067 215.990
C(dose)[T.1] 47.4110 16.046 2.955 0.012 12.450 82.372
expression -4.5769 9.682 -0.473 0.645 -25.673 16.519
Omnibus: 2.605 Durbin-Watson: 0.822
Prob(Omnibus): 0.272 Jarque-Bera (JB): 1.792
Skew: -0.825 Prob(JB): 0.408
Kurtosis: 2.617 Cond. No. 41.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:38:22 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.065
Model: OLS Adj. R-squared: -0.007
Method: Least Squares F-statistic: 0.9060
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.359
Time: 03:38:22 Log-Likelihood: -74.795
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 155.6473 65.854 2.364 0.034 13.378 297.916
expression -11.3108 11.883 -0.952 0.359 -36.983 14.361
Omnibus: 5.168 Durbin-Watson: 1.653
Prob(Omnibus): 0.075 Jarque-Bera (JB): 1.673
Skew: 0.361 Prob(JB): 0.433
Kurtosis: 1.532 Cond. No. 38.3