AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.490 | 0.492 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.603 |
Method: | Least Squares | F-statistic: | 12.16 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000114 |
Time: | 04:56:02 | Log-Likelihood: | -100.78 |
No. Observations: | 23 | AIC: | 209.6 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -51.9309 | 203.813 | -0.255 | 0.802 | -478.516 374.654 |
C(dose)[T.1] | 22.5334 | 369.246 | 0.061 | 0.952 | -750.308 795.375 |
expression | 11.2852 | 21.660 | 0.521 | 0.608 | -34.051 56.621 |
expression:C(dose)[T.1] | 2.3369 | 37.508 | 0.062 | 0.951 | -76.168 80.842 |
Omnibus: | 0.103 | Durbin-Watson: | 1.912 |
Prob(Omnibus): | 0.950 | Jarque-Bera (JB): | 0.206 |
Skew: | 0.135 | Prob(JB): | 0.902 |
Kurtosis: | 2.623 | Cond. No. | 992. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.19 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.22e-05 |
Time: | 04:56:02 | Log-Likelihood: | -100.78 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -59.2608 | 162.232 | -0.365 | 0.719 | -397.671 279.149 |
C(dose)[T.1] | 45.5212 | 14.134 | 3.221 | 0.004 | 16.038 75.005 |
expression | 12.0646 | 17.238 | 0.700 | 0.492 | -23.892 48.021 |
Omnibus: | 0.094 | Durbin-Watson: | 1.900 |
Prob(Omnibus): | 0.954 | Jarque-Bera (JB): | 0.215 |
Skew: | 0.130 | Prob(JB): | 0.898 |
Kurtosis: | 2.604 | Cond. No. | 370. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:56:03 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.480 |
Model: | OLS | Adj. R-squared: | 0.455 |
Method: | Least Squares | F-statistic: | 19.37 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000249 |
Time: | 04:56:03 | Log-Likelihood: | -105.59 |
No. Observations: | 23 | AIC: | 215.2 |
Df Residuals: | 21 | BIC: | 217.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -463.6060 | 123.566 | -3.752 | 0.001 | -720.575 -206.637 |
expression | 55.9264 | 12.708 | 4.401 | 0.000 | 29.499 82.354 |
Omnibus: | 1.281 | Durbin-Watson: | 2.204 |
Prob(Omnibus): | 0.527 | Jarque-Bera (JB): | 1.159 |
Skew: | 0.480 | Prob(JB): | 0.560 |
Kurtosis: | 2.463 | Cond. No. | 233. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.469 | 0.249 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.511 |
Model: | OLS | Adj. R-squared: | 0.378 |
Method: | Least Squares | F-statistic: | 3.838 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0420 |
Time: | 04:56:03 | Log-Likelihood: | -69.929 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 263.2773 | 251.555 | 1.047 | 0.318 | -290.392 816.947 |
C(dose)[T.1] | 140.9726 | 408.022 | 0.346 | 0.736 | -757.078 1039.023 |
expression | -23.4469 | 30.086 | -0.779 | 0.452 | -89.665 42.771 |
expression:C(dose)[T.1] | -11.7292 | 49.468 | -0.237 | 0.817 | -120.607 97.149 |
Omnibus: | 8.596 | Durbin-Watson: | 0.865 |
Prob(Omnibus): | 0.014 | Jarque-Bera (JB): | 5.125 |
Skew: | -1.322 | Prob(JB): | 0.0771 |
Kurtosis: | 4.097 | Cond. No. | 556. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.509 |
Model: | OLS | Adj. R-squared: | 0.427 |
Method: | Least Squares | F-statistic: | 6.217 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0140 |
Time: | 04:56:03 | Log-Likelihood: | -69.967 |
No. Observations: | 15 | AIC: | 145.9 |
Df Residuals: | 12 | BIC: | 148.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 299.5165 | 191.784 | 1.562 | 0.144 | -118.344 717.377 |
C(dose)[T.1] | 44.3018 | 15.395 | 2.878 | 0.014 | 10.758 77.846 |
expression | -27.7854 | 22.923 | -1.212 | 0.249 | -77.731 22.160 |
Omnibus: | 6.949 | Durbin-Watson: | 0.877 |
Prob(Omnibus): | 0.031 | Jarque-Bera (JB): | 3.948 |
Skew: | -1.196 | Prob(JB): | 0.139 |
Kurtosis: | 3.774 | Cond. No. | 217. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:56:03 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.170 |
Model: | OLS | Adj. R-squared: | 0.106 |
Method: | Least Squares | F-statistic: | 2.663 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.127 |
Time: | 04:56:03 | Log-Likelihood: | -73.902 |
No. Observations: | 15 | AIC: | 151.8 |
Df Residuals: | 13 | BIC: | 153.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 466.0409 | 228.375 | 2.041 | 0.062 | -27.334 959.416 |
expression | -45.0876 | 27.629 | -1.632 | 0.127 | -104.777 14.602 |
Omnibus: | 1.588 | Durbin-Watson: | 1.903 |
Prob(Omnibus): | 0.452 | Jarque-Bera (JB): | 0.911 |
Skew: | -0.188 | Prob(JB): | 0.634 |
Kurtosis: | 1.853 | Cond. No. | 207. |