AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.056 | 0.815 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.595 |
Method: | Least Squares | F-statistic: | 11.76 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.000139 |
Time: | 22:47:54 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 210.1 |
Df Residuals: | 19 | BIC: | 214.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 75.3222 | 132.006 | 0.571 | 0.575 | -200.969 351.613 |
C(dose)[T.1] | 55.6964 | 192.961 | 0.289 | 0.776 | -348.176 459.569 |
expression | -3.2008 | 19.989 | -0.160 | 0.874 | -45.039 38.637 |
expression:C(dose)[T.1] | -0.3359 | 29.125 | -0.012 | 0.991 | -61.296 60.624 |
Omnibus: | 0.310 | Durbin-Watson: | 1.846 |
Prob(Omnibus): | 0.856 | Jarque-Bera (JB): | 0.480 |
Skew: | 0.091 | Prob(JB): | 0.787 |
Kurtosis: | 2.316 | Cond. No. | 373. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.57 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 2.76e-05 |
Time: | 22:47:54 | Log-Likelihood: | -101.03 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 76.3659 | 93.670 | 0.815 | 0.425 | -119.026 271.758 |
C(dose)[T.1] | 53.4733 | 8.776 | 6.093 | 0.000 | 35.166 71.780 |
expression | -3.3590 | 14.170 | -0.237 | 0.815 | -32.918 26.200 |
Omnibus: | 0.309 | Durbin-Watson: | 1.844 |
Prob(Omnibus): | 0.857 | Jarque-Bera (JB): | 0.479 |
Skew: | 0.090 | Prob(JB): | 0.787 |
Kurtosis: | 2.317 | Cond. No. | 145. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 22:47:54 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.047 |
Method: | Least Squares | F-statistic: | 0.009663 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.923 |
Time: | 22:47:54 | Log-Likelihood: | -113.10 |
No. Observations: | 23 | AIC: | 230.2 |
Df Residuals: | 21 | BIC: | 232.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 64.5511 | 154.455 | 0.418 | 0.680 | -256.656 385.758 |
expression | 2.2924 | 23.321 | 0.098 | 0.923 | -46.205 50.790 |
Omnibus: | 3.271 | Durbin-Watson: | 2.511 |
Prob(Omnibus): | 0.195 | Jarque-Bera (JB): | 1.556 |
Skew: | 0.285 | Prob(JB): | 0.459 |
Kurtosis: | 1.860 | Cond. No. | 145. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.394 | 0.148 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.554 |
Model: | OLS | Adj. R-squared: | 0.433 |
Method: | Least Squares | F-statistic: | 4.559 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0261 |
Time: | 22:47:55 | Log-Likelihood: | -69.241 |
No. Observations: | 15 | AIC: | 146.5 |
Df Residuals: | 11 | BIC: | 149.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -16.2218 | 265.769 | -0.061 | 0.952 | -601.176 568.732 |
C(dose)[T.1] | -141.1154 | 317.372 | -0.445 | 0.665 | -839.646 557.415 |
expression | 10.6195 | 33.712 | 0.315 | 0.759 | -63.580 84.819 |
expression:C(dose)[T.1] | 23.2671 | 39.941 | 0.583 | 0.572 | -64.643 111.177 |
Omnibus: | 2.373 | Durbin-Watson: | 0.755 |
Prob(Omnibus): | 0.305 | Jarque-Bera (JB): | 1.731 |
Skew: | -0.791 | Prob(JB): | 0.421 |
Kurtosis: | 2.485 | Cond. No. | 511. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.540 |
Model: | OLS | Adj. R-squared: | 0.464 |
Method: | Least Squares | F-statistic: | 7.057 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00942 |
Time: | 22:47:55 | Log-Likelihood: | -69.468 |
No. Observations: | 15 | AIC: | 144.9 |
Df Residuals: | 12 | BIC: | 147.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -146.7864 | 138.834 | -1.057 | 0.311 | -449.279 155.706 |
C(dose)[T.1] | 43.5503 | 14.827 | 2.937 | 0.012 | 11.245 75.856 |
expression | 27.1948 | 17.575 | 1.547 | 0.148 | -11.097 65.487 |
Omnibus: | 2.183 | Durbin-Watson: | 0.608 |
Prob(Omnibus): | 0.336 | Jarque-Bera (JB): | 1.606 |
Skew: | -0.646 | Prob(JB): | 0.448 |
Kurtosis: | 2.052 | Cond. No. | 158. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 22:47:55 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.210 |
Model: | OLS | Adj. R-squared: | 0.149 |
Method: | Least Squares | F-statistic: | 3.458 |
Date: | Thu, 03 Apr 2025 | Prob (F-statistic): | 0.0857 |
Time: | 22:47:55 | Log-Likelihood: | -73.531 |
No. Observations: | 15 | AIC: | 151.1 |
Df Residuals: | 13 | BIC: | 152.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -225.0310 | 171.632 | -1.311 | 0.213 | -595.820 145.758 |
expression | 39.8981 | 21.457 | 1.859 | 0.086 | -6.457 86.253 |
Omnibus: | 0.576 | Durbin-Watson: | 1.323 |
Prob(Omnibus): | 0.750 | Jarque-Bera (JB): | 0.586 |
Skew: | -0.136 | Prob(JB): | 0.746 |
Kurtosis: | 2.071 | Cond. No. | 154. |