AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.589 | 0.452 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.704 |
Model: | OLS | Adj. R-squared: | 0.658 |
Method: | Least Squares | F-statistic: | 15.08 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.91e-05 |
Time: | 03:57:38 | Log-Likelihood: | -99.095 |
No. Observations: | 23 | AIC: | 206.2 |
Df Residuals: | 19 | BIC: | 210.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 31.5215 | 175.235 | 0.180 | 0.859 | -335.249 398.292 |
C(dose)[T.1] | -767.8998 | 482.217 | -1.592 | 0.128 | -1777.191 241.392 |
expression | 2.3728 | 18.318 | 0.130 | 0.898 | -35.967 40.713 |
expression:C(dose)[T.1] | 85.8747 | 50.418 | 1.703 | 0.105 | -19.652 191.402 |
Omnibus: | 0.393 | Durbin-Watson: | 2.056 |
Prob(Omnibus): | 0.821 | Jarque-Bera (JB): | 0.507 |
Skew: | 0.251 | Prob(JB): | 0.776 |
Kurtosis: | 2.474 | Cond. No. | 1.29e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.659 |
Model: | OLS | Adj. R-squared: | 0.625 |
Method: | Least Squares | F-statistic: | 19.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.12e-05 |
Time: | 03:57:38 | Log-Likelihood: | -100.73 |
No. Observations: | 23 | AIC: | 207.5 |
Df Residuals: | 20 | BIC: | 210.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -76.8596 | 170.857 | -0.450 | 0.658 | -433.260 279.541 |
C(dose)[T.1] | 53.3098 | 8.644 | 6.168 | 0.000 | 35.280 71.340 |
expression | 13.7084 | 17.859 | 0.768 | 0.452 | -23.545 50.961 |
Omnibus: | 0.839 | Durbin-Watson: | 1.882 |
Prob(Omnibus): | 0.657 | Jarque-Bera (JB): | 0.765 |
Skew: | 0.169 | Prob(JB): | 0.682 |
Kurtosis: | 2.173 | Cond. No. | 383. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:57:38 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.011 |
Model: | OLS | Adj. R-squared: | -0.036 |
Method: | Least Squares | F-statistic: | 0.2275 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.638 |
Time: | 03:57:38 | Log-Likelihood: | -112.98 |
No. Observations: | 23 | AIC: | 230.0 |
Df Residuals: | 21 | BIC: | 232.2 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -55.7026 | 283.985 | -0.196 | 0.846 | -646.282 534.877 |
expression | 14.1622 | 29.690 | 0.477 | 0.638 | -47.581 75.905 |
Omnibus: | 3.662 | Durbin-Watson: | 2.484 |
Prob(Omnibus): | 0.160 | Jarque-Bera (JB): | 1.593 |
Skew: | 0.260 | Prob(JB): | 0.451 |
Kurtosis: | 1.820 | Cond. No. | 383. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.264 | 0.617 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.539 |
Model: | OLS | Adj. R-squared: | 0.413 |
Method: | Least Squares | F-statistic: | 4.285 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0312 |
Time: | 03:57:38 | Log-Likelihood: | -69.494 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 11 | BIC: | 149.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 661.8601 | 701.285 | 0.944 | 0.366 | -881.658 2205.378 |
C(dose)[T.1] | -1110.2958 | 845.608 | -1.313 | 0.216 | -2971.467 750.875 |
expression | -60.2742 | 71.100 | -0.848 | 0.415 | -216.765 96.216 |
expression:C(dose)[T.1] | 116.3280 | 85.154 | 1.366 | 0.199 | -71.094 303.750 |
Omnibus: | 2.072 | Durbin-Watson: | 1.267 |
Prob(Omnibus): | 0.355 | Jarque-Bera (JB): | 1.066 |
Skew: | -0.254 | Prob(JB): | 0.587 |
Kurtosis: | 1.797 | Cond. No. | 1.65e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.461 |
Model: | OLS | Adj. R-squared: | 0.371 |
Method: | Least Squares | F-statistic: | 5.124 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0246 |
Time: | 03:57:38 | Log-Likelihood: | -70.670 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -137.9573 | 399.719 | -0.345 | 0.736 | -1008.869 732.955 |
C(dose)[T.1] | 44.6447 | 17.911 | 2.493 | 0.028 | 5.620 83.670 |
expression | 20.8257 | 40.514 | 0.514 | 0.617 | -67.447 109.099 |
Omnibus: | 1.866 | Durbin-Watson: | 0.778 |
Prob(Omnibus): | 0.393 | Jarque-Bera (JB): | 1.460 |
Skew: | -0.642 | Prob(JB): | 0.482 |
Kurtosis: | 2.171 | Cond. No. | 520. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:57:38 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.181 |
Model: | OLS | Adj. R-squared: | 0.118 |
Method: | Least Squares | F-statistic: | 2.881 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.113 |
Time: | 03:57:38 | Log-Likelihood: | -73.799 |
No. Observations: | 15 | AIC: | 151.6 |
Df Residuals: | 13 | BIC: | 153.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -612.3296 | 416.054 | -1.472 | 0.165 | -1511.159 286.500 |
expression | 70.7504 | 41.684 | 1.697 | 0.113 | -19.303 160.803 |
Omnibus: | 0.285 | Durbin-Watson: | 1.362 |
Prob(Omnibus): | 0.867 | Jarque-Bera (JB): | 0.114 |
Skew: | -0.175 | Prob(JB): | 0.944 |
Kurtosis: | 2.754 | Cond. No. | 456. |