AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.153 0.296 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.687
Model: OLS Adj. R-squared: 0.637
Method: Least Squares F-statistic: 13.89
Date: Thu, 03 Apr 2025 Prob (F-statistic): 4.95e-05
Time: 23:01:30 Log-Likelihood: -99.751
No. Observations: 23 AIC: 207.5
Df Residuals: 19 BIC: 212.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 34.1804 242.567 0.141 0.889 -473.518 541.879
C(dose)[T.1] -335.0458 362.992 -0.923 0.368 -1094.797 424.705
expression 2.2807 27.615 0.083 0.935 -55.518 60.079
expression:C(dose)[T.1] 43.7950 41.113 1.065 0.300 -42.255 129.845
Omnibus: 0.415 Durbin-Watson: 1.805
Prob(Omnibus): 0.812 Jarque-Bera (JB): 0.538
Skew: 0.069 Prob(JB): 0.764
Kurtosis: 2.264 Cond. No. 969.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.668
Model: OLS Adj. R-squared: 0.635
Method: Least Squares F-statistic: 20.14
Date: Thu, 03 Apr 2025 Prob (F-statistic): 1.62e-05
Time: 23:01:30 Log-Likelihood: -100.42
No. Observations: 23 AIC: 206.8
Df Residuals: 20 BIC: 210.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -139.3267 180.351 -0.773 0.449 -515.531 236.878
C(dose)[T.1] 51.5183 8.694 5.926 0.000 33.383 69.654
expression 22.0393 20.527 1.074 0.296 -20.779 64.858
Omnibus: 1.266 Durbin-Watson: 1.849
Prob(Omnibus): 0.531 Jarque-Bera (JB): 0.881
Skew: 0.093 Prob(JB): 0.644
Kurtosis: 2.059 Cond. No. 379.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 23:01:30 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.086
Model: OLS Adj. R-squared: 0.042
Method: Least Squares F-statistic: 1.967
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.175
Time: 23:01:30 Log-Likelihood: -112.08
No. Observations: 23 AIC: 228.2
Df Residuals: 21 BIC: 230.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -323.7401 287.787 -1.125 0.273 -922.225 274.745
expression 45.7391 32.616 1.402 0.175 -22.090 113.569
Omnibus: 3.427 Durbin-Watson: 2.507
Prob(Omnibus): 0.180 Jarque-Bera (JB): 1.388
Skew: 0.102 Prob(JB): 0.499
Kurtosis: 1.814 Cond. No. 373.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.220 0.647 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.548
Model: OLS Adj. R-squared: 0.425
Method: Least Squares F-statistic: 4.450
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0280
Time: 23:01:30 Log-Likelihood: -69.341
No. Observations: 15 AIC: 146.7
Df Residuals: 11 BIC: 149.5
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 637.0593 623.216 1.022 0.329 -734.631 2008.750
C(dose)[T.1] -1100.0706 774.824 -1.420 0.183 -2805.447 605.305
expression -62.4603 68.326 -0.914 0.380 -212.844 87.923
expression:C(dose)[T.1] 124.0589 84.029 1.476 0.168 -60.888 309.006
Omnibus: 1.005 Durbin-Watson: 1.395
Prob(Omnibus): 0.605 Jarque-Bera (JB): 0.776
Skew: -0.232 Prob(JB): 0.679
Kurtosis: 1.987 Cond. No. 1.40e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.459
Model: OLS Adj. R-squared: 0.368
Method: Least Squares F-statistic: 5.085
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0252
Time: 23:01:30 Log-Likelihood: -70.697
No. Observations: 15 AIC: 147.4
Df Residuals: 12 BIC: 149.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -110.9770 380.301 -0.292 0.775 -939.582 717.628
C(dose)[T.1] 43.5229 19.733 2.206 0.048 0.528 86.518
expression 19.5623 41.682 0.469 0.647 -71.254 110.379
Omnibus: 1.905 Durbin-Watson: 0.728
Prob(Omnibus): 0.386 Jarque-Bera (JB): 1.487
Skew: -0.650 Prob(JB): 0.475
Kurtosis: 2.170 Cond. No. 460.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 23:01:30 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.239
Model: OLS Adj. R-squared: 0.181
Method: Least Squares F-statistic: 4.089
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0642
Time: 23:01:30 Log-Likelihood: -73.249
No. Observations: 15 AIC: 150.5
Df Residuals: 13 BIC: 151.9
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -610.0763 348.125 -1.752 0.103 -1362.155 142.002
expression 75.8789 37.523 2.022 0.064 -5.185 156.943
Omnibus: 0.518 Durbin-Watson: 1.058
Prob(Omnibus): 0.772 Jarque-Bera (JB): 0.248
Skew: -0.292 Prob(JB): 0.883
Kurtosis: 2.764 Cond. No. 369.