AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.004 | 0.952 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.684 |
Model: | OLS | Adj. R-squared: | 0.634 |
Method: | Least Squares | F-statistic: | 13.68 |
Date: | Thu, 10 Apr 2025 | Prob (F-statistic): | 5.47e-05 |
Time: | 06:29:09 | Log-Likelihood: | -99.873 |
No. Observations: | 23 | AIC: | 207.7 |
Df Residuals: | 19 | BIC: | 212.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -66.0165 | 117.588 | -0.561 | 0.581 | -312.131 180.098 |
C(dose)[T.1] | 306.4427 | 176.462 | 1.737 | 0.099 | -62.896 675.782 |
expression | 14.2027 | 13.874 | 1.024 | 0.319 | -14.835 43.241 |
expression:C(dose)[T.1] | -29.3097 | 20.390 | -1.437 | 0.167 | -71.986 13.367 |
Omnibus: | 0.187 | Durbin-Watson: | 1.917 |
Prob(Omnibus): | 0.911 | Jarque-Bera (JB): | 0.363 |
Skew: | 0.160 | Prob(JB): | 0.834 |
Kurtosis: | 2.474 | Cond. No. | 461. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.614 |
Method: | Least Squares | F-statistic: | 18.50 |
Date: | Thu, 10 Apr 2025 | Prob (F-statistic): | 2.83e-05 |
Time: | 06:29:09 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 48.8496 | 88.534 | 0.552 | 0.587 | -135.830 233.529 |
C(dose)[T.1] | 53.1275 | 9.425 | 5.637 | 0.000 | 33.468 72.788 |
expression | 0.6331 | 10.434 | 0.061 | 0.952 | -21.133 22.399 |
Omnibus: | 0.291 | Durbin-Watson: | 1.886 |
Prob(Omnibus): | 0.865 | Jarque-Bera (JB): | 0.466 |
Skew: | 0.054 | Prob(JB): | 0.792 |
Kurtosis: | 2.311 | Cond. No. | 177. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 10 Apr 2025 | Prob (F-statistic): | 3.51e-06 |
Time: | 06:29:09 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.092 |
Model: | OLS | Adj. R-squared: | 0.048 |
Method: | Least Squares | F-statistic: | 2.119 |
Date: | Thu, 10 Apr 2025 | Prob (F-statistic): | 0.160 |
Time: | 06:29:09 | Log-Likelihood: | -112.00 |
No. Observations: | 23 | AIC: | 228.0 |
Df Residuals: | 21 | BIC: | 230.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -111.6376 | 131.631 | -0.848 | 0.406 | -385.380 162.105 |
expression | 22.1906 | 15.244 | 1.456 | 0.160 | -9.511 53.892 |
Omnibus: | 3.902 | Durbin-Watson: | 2.346 |
Prob(Omnibus): | 0.142 | Jarque-Bera (JB): | 2.037 |
Skew: | 0.457 | Prob(JB): | 0.361 |
Kurtosis: | 1.864 | Cond. No. | 167. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.493 | 0.245 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.511 |
Model: | OLS | Adj. R-squared: | 0.377 |
Method: | Least Squares | F-statistic: | 3.829 |
Date: | Thu, 10 Apr 2025 | Prob (F-statistic): | 0.0423 |
Time: | 06:29:09 | Log-Likelihood: | -69.938 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -109.5932 | 335.796 | -0.326 | 0.750 | -848.674 629.488 |
C(dose)[T.1] | 3.2240 | 396.744 | 0.008 | 0.994 | -870.003 876.451 |
expression | 21.0454 | 39.899 | 0.527 | 0.608 | -66.771 108.862 |
expression:C(dose)[T.1] | 7.2912 | 48.073 | 0.152 | 0.882 | -98.517 113.100 |
Omnibus: | 0.184 | Durbin-Watson: | 1.047 |
Prob(Omnibus): | 0.912 | Jarque-Bera (JB): | 0.313 |
Skew: | -0.209 | Prob(JB): | 0.855 |
Kurtosis: | 2.430 | Cond. No. | 611. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.510 |
Model: | OLS | Adj. R-squared: | 0.428 |
Method: | Least Squares | F-statistic: | 6.239 |
Date: | Thu, 10 Apr 2025 | Prob (F-statistic): | 0.0139 |
Time: | 06:29:09 | Log-Likelihood: | -69.953 |
No. Observations: | 15 | AIC: | 145.9 |
Df Residuals: | 12 | BIC: | 148.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -151.8389 | 179.755 | -0.845 | 0.415 | -543.491 239.813 |
C(dose)[T.1] | 63.3242 | 18.814 | 3.366 | 0.006 | 22.332 104.317 |
expression | 26.0678 | 21.331 | 1.222 | 0.245 | -20.409 72.545 |
Omnibus: | 0.297 | Durbin-Watson: | 1.016 |
Prob(Omnibus): | 0.862 | Jarque-Bera (JB): | 0.412 |
Skew: | -0.259 | Prob(JB): | 0.814 |
Kurtosis: | 2.375 | Cond. No. | 201. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 10 Apr 2025 | Prob (F-statistic): | 0.00629 |
Time: | 06:29:09 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.047 |
Model: | OLS | Adj. R-squared: | -0.026 |
Method: | Least Squares | F-statistic: | 0.6410 |
Date: | Thu, 10 Apr 2025 | Prob (F-statistic): | 0.438 |
Time: | 06:29:09 | Log-Likelihood: | -74.939 |
No. Observations: | 15 | AIC: | 153.9 |
Df Residuals: | 13 | BIC: | 155.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 240.2731 | 183.380 | 1.310 | 0.213 | -155.895 636.441 |
expression | -18.0497 | 22.544 | -0.801 | 0.438 | -66.753 30.654 |
Omnibus: | 0.877 | Durbin-Watson: | 1.483 |
Prob(Omnibus): | 0.645 | Jarque-Bera (JB): | 0.689 |
Skew: | -0.122 | Prob(JB): | 0.709 |
Kurtosis: | 1.979 | Cond. No. | 153. |