AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.219 | 0.645 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.675 |
Model: | OLS | Adj. R-squared: | 0.624 |
Method: | Least Squares | F-statistic: | 13.16 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.99e-05 |
Time: | 05:22:06 | Log-Likelihood: | -100.18 |
No. Observations: | 23 | AIC: | 208.4 |
Df Residuals: | 19 | BIC: | 212.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 133.7582 | 65.785 | 2.033 | 0.056 | -3.932 271.449 |
C(dose)[T.1] | -34.3175 | 76.503 | -0.449 | 0.659 | -194.441 125.806 |
expression | -14.2676 | 11.750 | -1.214 | 0.240 | -38.860 10.325 |
expression:C(dose)[T.1] | 15.8288 | 13.900 | 1.139 | 0.269 | -13.263 44.921 |
Omnibus: | 0.683 | Durbin-Watson: | 2.099 |
Prob(Omnibus): | 0.711 | Jarque-Bera (JB): | 0.657 |
Skew: | -0.001 | Prob(JB): | 0.720 |
Kurtosis: | 2.172 | Cond. No. | 141. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.653 |
Model: | OLS | Adj. R-squared: | 0.618 |
Method: | Least Squares | F-statistic: | 18.81 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.54e-05 |
Time: | 05:22:06 | Log-Likelihood: | -100.94 |
No. Observations: | 23 | AIC: | 207.9 |
Df Residuals: | 20 | BIC: | 211.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 70.6910 | 35.769 | 1.976 | 0.062 | -3.922 145.304 |
C(dose)[T.1] | 52.2011 | 9.054 | 5.765 | 0.000 | 33.314 71.088 |
expression | -2.9562 | 6.323 | -0.468 | 0.645 | -16.147 10.234 |
Omnibus: | 0.210 | Durbin-Watson: | 2.011 |
Prob(Omnibus): | 0.900 | Jarque-Bera (JB): | 0.413 |
Skew: | -0.005 | Prob(JB): | 0.814 |
Kurtosis: | 2.344 | Cond. No. | 46.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:22:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.076 |
Model: | OLS | Adj. R-squared: | 0.032 |
Method: | Least Squares | F-statistic: | 1.725 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.203 |
Time: | 05:22:06 | Log-Likelihood: | -112.20 |
No. Observations: | 23 | AIC: | 228.4 |
Df Residuals: | 21 | BIC: | 230.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 148.4095 | 52.753 | 2.813 | 0.010 | 38.704 258.115 |
expression | -12.7402 | 9.699 | -1.314 | 0.203 | -32.910 7.430 |
Omnibus: | 3.606 | Durbin-Watson: | 2.632 |
Prob(Omnibus): | 0.165 | Jarque-Bera (JB): | 1.901 |
Skew: | 0.426 | Prob(JB): | 0.386 |
Kurtosis: | 1.879 | Cond. No. | 42.7 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.007 | 0.936 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.457 |
Model: | OLS | Adj. R-squared: | 0.309 |
Method: | Least Squares | F-statistic: | 3.090 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0718 |
Time: | 05:22:06 | Log-Likelihood: | -70.716 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 95.3229 | 157.793 | 0.604 | 0.558 | -251.977 442.623 |
C(dose)[T.1] | -63.5317 | 275.363 | -0.231 | 0.822 | -669.602 542.539 |
expression | -4.1447 | 23.379 | -0.177 | 0.863 | -55.601 47.312 |
expression:C(dose)[T.1] | 16.1832 | 39.618 | 0.408 | 0.691 | -71.016 103.383 |
Omnibus: | 3.310 | Durbin-Watson: | 0.780 |
Prob(Omnibus): | 0.191 | Jarque-Bera (JB): | 2.058 |
Skew: | -0.905 | Prob(JB): | 0.357 |
Kurtosis: | 2.861 | Cond. No. | 298. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.357 |
Method: | Least Squares | F-statistic: | 4.891 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0280 |
Time: | 05:22:06 | Log-Likelihood: | -70.829 |
No. Observations: | 15 | AIC: | 147.7 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 57.3964 | 123.076 | 0.466 | 0.649 | -210.763 325.556 |
C(dose)[T.1] | 48.7244 | 16.758 | 2.907 | 0.013 | 12.211 85.238 |
expression | 1.4906 | 18.207 | 0.082 | 0.936 | -38.180 41.161 |
Omnibus: | 2.922 | Durbin-Watson: | 0.805 |
Prob(Omnibus): | 0.232 | Jarque-Bera (JB): | 1.972 |
Skew: | -0.873 | Prob(JB): | 0.373 |
Kurtosis: | 2.671 | Cond. No. | 111. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:22:06 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.061 |
Model: | OLS | Adj. R-squared: | -0.011 |
Method: | Least Squares | F-statistic: | 0.8444 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.375 |
Time: | 05:22:06 | Log-Likelihood: | -74.828 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -42.2780 | 148.267 | -0.285 | 0.780 | -362.590 278.034 |
expression | 19.7048 | 21.444 | 0.919 | 0.375 | -26.621 66.031 |
Omnibus: | 0.298 | Durbin-Watson: | 1.493 |
Prob(Omnibus): | 0.861 | Jarque-Bera (JB): | 0.336 |
Skew: | -0.269 | Prob(JB): | 0.845 |
Kurtosis: | 2.501 | Cond. No. | 106. |