AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
3.655 0.070 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.712
Model: OLS Adj. R-squared: 0.666
Method: Least Squares F-statistic: 15.65
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.28e-05
Time: 03:55:57 Log-Likelihood: -98.792
No. Observations: 23 AIC: 205.6
Df Residuals: 19 BIC: 210.1
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 13.4690 41.714 0.323 0.750 -73.838 100.776
C(dose)[T.1] 10.2867 63.131 0.163 0.872 -121.848 142.422
expression 8.4279 8.550 0.986 0.337 -9.468 26.324
expression:C(dose)[T.1] 10.2041 13.506 0.755 0.459 -18.065 38.473
Omnibus: 0.506 Durbin-Watson: 1.688
Prob(Omnibus): 0.777 Jarque-Bera (JB): 0.595
Skew: 0.284 Prob(JB): 0.743
Kurtosis: 2.454 Cond. No. 94.8

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.703
Model: OLS Adj. R-squared: 0.674
Method: Least Squares F-statistic: 23.70
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.29e-06
Time: 03:55:57 Log-Likelihood: -99.133
No. Observations: 23 AIC: 204.3
Df Residuals: 20 BIC: 207.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -6.2980 32.137 -0.196 0.847 -73.335 60.739
C(dose)[T.1] 57.5526 8.360 6.884 0.000 40.114 74.991
expression 12.5171 6.547 1.912 0.070 -1.141 26.175
Omnibus: 0.291 Durbin-Watson: 1.537
Prob(Omnibus): 0.865 Jarque-Bera (JB): 0.468
Skew: 0.096 Prob(JB): 0.791
Kurtosis: 2.328 Cond. No. 39.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:55:57 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.047
Method: Least Squares F-statistic: 0.003085
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.956
Time: 03:55:57 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.7811 53.358 1.439 0.165 -34.183 187.745
expression 0.6284 11.314 0.056 0.956 -22.900 24.157
Omnibus: 3.262 Durbin-Watson: 2.482
Prob(Omnibus): 0.196 Jarque-Bera (JB): 1.560
Skew: 0.288 Prob(JB): 0.458
Kurtosis: 1.862 Cond. No. 36.4

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.566 0.466 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.330
Method: Least Squares F-statistic: 3.300
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0615
Time: 03:55:57 Log-Likelihood: -70.486
No. Observations: 15 AIC: 149.0
Df Residuals: 11 BIC: 151.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -14.1401 138.953 -0.102 0.921 -319.973 291.693
C(dose)[T.1] 50.1049 238.607 0.210 0.838 -475.066 575.276
expression 17.3822 29.505 0.589 0.568 -47.558 82.322
expression:C(dose)[T.1] -2.0507 47.176 -0.043 0.966 -105.884 101.783
Omnibus: 1.049 Durbin-Watson: 1.003
Prob(Omnibus): 0.592 Jarque-Bera (JB): 0.912
Skew: -0.498 Prob(JB): 0.634
Kurtosis: 2.315 Cond. No. 198.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.398
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0213
Time: 03:55:57 Log-Likelihood: -70.488
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -10.3760 104.053 -0.100 0.922 -237.088 216.336
C(dose)[T.1] 39.7722 19.839 2.005 0.068 -3.453 82.998
expression 16.5801 22.044 0.752 0.466 -31.450 64.610
Omnibus: 0.984 Durbin-Watson: 1.006
Prob(Omnibus): 0.612 Jarque-Bera (JB): 0.870
Skew: -0.480 Prob(JB): 0.647
Kurtosis: 2.315 Cond. No. 71.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:55:57 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.297
Model: OLS Adj. R-squared: 0.243
Method: Least Squares F-statistic: 5.500
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0355
Time: 03:55:57 Log-Likelihood: -72.654
No. Observations: 15 AIC: 149.3
Df Residuals: 13 BIC: 150.7
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -128.6047 95.162 -1.351 0.200 -334.189 76.980
expression 44.4917 18.972 2.345 0.036 3.505 85.478
Omnibus: 1.086 Durbin-Watson: 1.490
Prob(Omnibus): 0.581 Jarque-Bera (JB): 0.800
Skew: 0.519 Prob(JB): 0.670
Kurtosis: 2.551 Cond. No. 58.2