AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.763 | 0.393 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.680 |
Model: | OLS | Adj. R-squared: | 0.629 |
Method: | Least Squares | F-statistic: | 13.43 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.14e-05 |
Time: | 05:10:48 | Log-Likelihood: | -100.02 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 19 | BIC: | 212.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 318.9237 | 197.368 | 1.616 | 0.123 | -94.172 732.020 |
C(dose)[T.1] | -200.0292 | 243.720 | -0.821 | 0.422 | -710.142 310.083 |
expression | -29.6597 | 22.104 | -1.342 | 0.195 | -75.924 16.604 |
expression:C(dose)[T.1] | 28.3277 | 27.744 | 1.021 | 0.320 | -29.741 86.396 |
Omnibus: | 0.515 | Durbin-Watson: | 1.579 |
Prob(Omnibus): | 0.773 | Jarque-Bera (JB): | 0.607 |
Skew: | -0.150 | Prob(JB): | 0.738 |
Kurtosis: | 2.263 | Cond. No. | 692. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.662 |
Model: | OLS | Adj. R-squared: | 0.628 |
Method: | Least Squares | F-statistic: | 19.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.95e-05 |
Time: | 05:10:48 | Log-Likelihood: | -100.63 |
No. Observations: | 23 | AIC: | 207.3 |
Df Residuals: | 20 | BIC: | 210.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 158.4405 | 119.501 | 1.326 | 0.200 | -90.834 407.715 |
C(dose)[T.1] | 48.6048 | 10.171 | 4.779 | 0.000 | 27.389 69.821 |
expression | -11.6786 | 13.373 | -0.873 | 0.393 | -39.574 16.216 |
Omnibus: | 0.332 | Durbin-Watson: | 1.889 |
Prob(Omnibus): | 0.847 | Jarque-Bera (JB): | 0.495 |
Skew: | -0.105 | Prob(JB): | 0.781 |
Kurtosis: | 2.313 | Cond. No. | 247. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:10:48 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.276 |
Model: | OLS | Adj. R-squared: | 0.241 |
Method: | Least Squares | F-statistic: | 8.003 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0101 |
Time: | 05:10:48 | Log-Likelihood: | -109.39 |
No. Observations: | 23 | AIC: | 222.8 |
Df Residuals: | 21 | BIC: | 225.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 478.9597 | 141.258 | 3.391 | 0.003 | 185.198 772.721 |
expression | -45.7255 | 16.163 | -2.829 | 0.010 | -79.338 -12.113 |
Omnibus: | 2.094 | Durbin-Watson: | 2.111 |
Prob(Omnibus): | 0.351 | Jarque-Bera (JB): | 1.224 |
Skew: | 0.236 | Prob(JB): | 0.542 |
Kurtosis: | 1.974 | Cond. No. | 204. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.228 | 0.289 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.502 |
Model: | OLS | Adj. R-squared: | 0.366 |
Method: | Least Squares | F-statistic: | 3.691 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0465 |
Time: | 05:10:48 | Log-Likelihood: | -70.077 |
No. Observations: | 15 | AIC: | 148.2 |
Df Residuals: | 11 | BIC: | 151.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -232.6967 | 312.273 | -0.745 | 0.472 | -920.005 454.612 |
C(dose)[T.1] | 148.4642 | 514.464 | 0.289 | 0.778 | -983.864 1280.793 |
expression | 31.6730 | 32.933 | 0.962 | 0.357 | -40.812 104.158 |
expression:C(dose)[T.1] | -10.4323 | 54.338 | -0.192 | 0.851 | -130.030 109.166 |
Omnibus: | 3.330 | Durbin-Watson: | 1.024 |
Prob(Omnibus): | 0.189 | Jarque-Bera (JB): | 1.439 |
Skew: | -0.724 | Prob(JB): | 0.487 |
Kurtosis: | 3.453 | Cond. No. | 793. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.500 |
Model: | OLS | Adj. R-squared: | 0.417 |
Method: | Least Squares | F-statistic: | 5.999 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0156 |
Time: | 05:10:48 | Log-Likelihood: | -70.102 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 12 | BIC: | 148.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -196.3855 | 238.301 | -0.824 | 0.426 | -715.599 322.828 |
C(dose)[T.1] | 49.7393 | 14.999 | 3.316 | 0.006 | 17.059 82.420 |
expression | 27.8410 | 25.122 | 1.108 | 0.289 | -26.895 82.577 |
Omnibus: | 4.208 | Durbin-Watson: | 0.994 |
Prob(Omnibus): | 0.122 | Jarque-Bera (JB): | 1.887 |
Skew: | -0.802 | Prob(JB): | 0.389 |
Kurtosis: | 3.669 | Cond. No. | 306. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:10:48 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.042 |
Model: | OLS | Adj. R-squared: | -0.032 |
Method: | Least Squares | F-statistic: | 0.5658 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.465 |
Time: | 05:10:48 | Log-Likelihood: | -74.981 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -144.1038 | 316.254 | -0.456 | 0.656 | -827.328 539.121 |
expression | 25.1201 | 33.395 | 0.752 | 0.465 | -47.026 97.266 |
Omnibus: | 2.490 | Durbin-Watson: | 1.728 |
Prob(Omnibus): | 0.288 | Jarque-Bera (JB): | 1.097 |
Skew: | 0.186 | Prob(JB): | 0.578 |
Kurtosis: | 1.728 | Cond. No. | 304. |