AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.048 | 0.830 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.665 |
Model: | OLS | Adj. R-squared: | 0.612 |
Method: | Least Squares | F-statistic: | 12.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.35e-05 |
Time: | 04:02:33 | Log-Likelihood: | -100.54 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -33.6203 | 265.956 | -0.126 | 0.901 | -590.272 523.031 |
C(dose)[T.1] | 500.2391 | 486.413 | 1.028 | 0.317 | -517.834 1518.313 |
expression | 8.7517 | 26.494 | 0.330 | 0.745 | -46.701 64.205 |
expression:C(dose)[T.1] | -43.5561 | 47.538 | -0.916 | 0.371 | -143.055 55.943 |
Omnibus: | 0.726 | Durbin-Watson: | 1.911 |
Prob(Omnibus): | 0.695 | Jarque-Bera (JB): | 0.666 |
Skew: | 0.365 | Prob(JB): | 0.717 |
Kurtosis: | 2.599 | Cond. No. | 1.37e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.56 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.77e-05 |
Time: | 04:02:33 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 102.1514 | 219.959 | 0.464 | 0.647 | -356.676 560.979 |
C(dose)[T.1] | 54.6809 | 10.710 | 5.106 | 0.000 | 32.340 77.022 |
expression | -4.7773 | 21.910 | -0.218 | 0.830 | -50.480 40.925 |
Omnibus: | 0.502 | Durbin-Watson: | 1.898 |
Prob(Omnibus): | 0.778 | Jarque-Bera (JB): | 0.584 |
Skew: | 0.082 | Prob(JB): | 0.747 |
Kurtosis: | 2.236 | Cond. No. | 517. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 04:02:33 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.194 |
Model: | OLS | Adj. R-squared: | 0.155 |
Method: | Least Squares | F-statistic: | 5.041 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0356 |
Time: | 04:02:33 | Log-Likelihood: | -110.63 |
No. Observations: | 23 | AIC: | 225.3 |
Df Residuals: | 21 | BIC: | 227.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -526.2992 | 269.993 | -1.949 | 0.065 | -1087.780 35.181 |
expression | 59.5878 | 26.540 | 2.245 | 0.036 | 4.395 114.781 |
Omnibus: | 1.997 | Durbin-Watson: | 2.084 |
Prob(Omnibus): | 0.368 | Jarque-Bera (JB): | 1.290 |
Skew: | 0.308 | Prob(JB): | 0.525 |
Kurtosis: | 2.017 | Cond. No. | 428. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.023 | 0.883 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.510 |
Model: | OLS | Adj. R-squared: | 0.377 |
Method: | Least Squares | F-statistic: | 3.820 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0425 |
Time: | 04:02:33 | Log-Likelihood: | -69.946 |
No. Observations: | 15 | AIC: | 147.9 |
Df Residuals: | 11 | BIC: | 150.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 401.6559 | 337.978 | 1.188 | 0.260 | -342.229 1145.541 |
C(dose)[T.1] | -461.9514 | 438.523 | -1.053 | 0.315 | -1427.135 503.232 |
expression | -37.7689 | 38.171 | -0.989 | 0.344 | -121.783 46.246 |
expression:C(dose)[T.1] | 58.1434 | 49.910 | 1.165 | 0.269 | -51.708 167.994 |
Omnibus: | 0.958 | Durbin-Watson: | 1.022 |
Prob(Omnibus): | 0.619 | Jarque-Bera (JB): | 0.518 |
Skew: | -0.441 | Prob(JB): | 0.772 |
Kurtosis: | 2.772 | Cond. No. | 695. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.450 |
Model: | OLS | Adj. R-squared: | 0.358 |
Method: | Least Squares | F-statistic: | 4.905 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0277 |
Time: | 04:02:33 | Log-Likelihood: | -70.819 |
No. Observations: | 15 | AIC: | 147.6 |
Df Residuals: | 12 | BIC: | 149.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 100.6955 | 221.138 | 0.455 | 0.657 | -381.123 582.513 |
C(dose)[T.1] | 48.5728 | 16.261 | 2.987 | 0.011 | 13.144 84.002 |
expression | -3.7593 | 24.956 | -0.151 | 0.883 | -58.133 50.614 |
Omnibus: | 2.763 | Durbin-Watson: | 0.776 |
Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 1.901 |
Skew: | -0.851 | Prob(JB): | 0.387 |
Kurtosis: | 2.624 | Cond. No. | 251. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 04:02:34 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.041 |
Model: | OLS | Adj. R-squared: | -0.033 |
Method: | Least Squares | F-statistic: | 0.5516 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.471 |
Time: | 04:02:34 | Log-Likelihood: | -74.988 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 292.8709 | 268.411 | 1.091 | 0.295 | -286.997 872.738 |
expression | -22.7381 | 30.617 | -0.743 | 0.471 | -88.881 43.405 |
Omnibus: | 3.017 | Durbin-Watson: | 1.538 |
Prob(Omnibus): | 0.221 | Jarque-Bera (JB): | 1.192 |
Skew: | 0.192 | Prob(JB): | 0.551 |
Kurtosis: | 1.673 | Cond. No. | 240. |