AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.460 | 0.506 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.658 |
Model: | OLS | Adj. R-squared: | 0.604 |
Method: | Least Squares | F-statistic: | 12.20 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000111 |
Time: | 03:31:08 | Log-Likelihood: | -100.75 |
No. Observations: | 23 | AIC: | 209.5 |
Df Residuals: | 19 | BIC: | 214.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 107.0582 | 86.808 | 1.233 | 0.233 | -74.632 288.749 |
C(dose)[T.1] | 22.4127 | 104.463 | 0.215 | 0.832 | -196.231 241.056 |
expression | -10.2877 | 16.856 | -0.610 | 0.549 | -45.567 24.991 |
expression:C(dose)[T.1] | 5.7720 | 20.630 | 0.280 | 0.783 | -37.408 48.952 |
Omnibus: | 0.931 | Durbin-Watson: | 2.022 |
Prob(Omnibus): | 0.628 | Jarque-Bera (JB): | 0.752 |
Skew: | -0.012 | Prob(JB): | 0.687 |
Kurtosis: | 2.114 | Cond. No. | 172. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.657 |
Model: | OLS | Adj. R-squared: | 0.623 |
Method: | Least Squares | F-statistic: | 19.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.26e-05 |
Time: | 03:31:08 | Log-Likelihood: | -100.80 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 87.2643 | 49.131 | 1.776 | 0.091 | -15.221 189.749 |
C(dose)[T.1] | 51.5240 | 9.074 | 5.678 | 0.000 | 32.596 70.452 |
expression | -6.4346 | 9.492 | -0.678 | 0.506 | -26.235 13.366 |
Omnibus: | 0.683 | Durbin-Watson: | 1.990 |
Prob(Omnibus): | 0.711 | Jarque-Bera (JB): | 0.657 |
Skew: | 0.011 | Prob(JB): | 0.720 |
Kurtosis: | 2.172 | Cond. No. | 59.6 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:31:08 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.104 |
Model: | OLS | Adj. R-squared: | 0.061 |
Method: | Least Squares | F-statistic: | 2.434 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.134 |
Time: | 03:31:09 | Log-Likelihood: | -111.84 |
No. Observations: | 23 | AIC: | 227.7 |
Df Residuals: | 21 | BIC: | 230.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 191.3828 | 71.892 | 2.662 | 0.015 | 41.874 340.891 |
expression | -22.3222 | 14.306 | -1.560 | 0.134 | -52.074 7.430 |
Omnibus: | 2.262 | Durbin-Watson: | 2.454 |
Prob(Omnibus): | 0.323 | Jarque-Bera (JB): | 1.396 |
Skew: | 0.330 | Prob(JB): | 0.498 |
Kurtosis: | 1.990 | Cond. No. | 55.0 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.241 | 0.633 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.312 |
Method: | Least Squares | F-statistic: | 3.119 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0703 |
Time: | 03:31:09 | Log-Likelihood: | -70.684 |
No. Observations: | 15 | AIC: | 149.4 |
Df Residuals: | 11 | BIC: | 152.2 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 103.1182 | 152.246 | 0.677 | 0.512 | -231.972 438.209 |
C(dose)[T.1] | 48.9742 | 175.819 | 0.279 | 0.786 | -338.001 435.949 |
expression | -6.1545 | 26.174 | -0.235 | 0.818 | -63.763 51.454 |
expression:C(dose)[T.1] | 0.2123 | 29.978 | 0.007 | 0.994 | -65.769 66.194 |
Omnibus: | 2.875 | Durbin-Watson: | 0.782 |
Prob(Omnibus): | 0.238 | Jarque-Bera (JB): | 2.076 |
Skew: | -0.878 | Prob(JB): | 0.354 |
Kurtosis: | 2.513 | Cond. No. | 197. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.460 |
Model: | OLS | Adj. R-squared: | 0.370 |
Method: | Least Squares | F-statistic: | 5.103 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0249 |
Time: | 03:31:09 | Log-Likelihood: | -70.684 |
No. Observations: | 15 | AIC: | 147.4 |
Df Residuals: | 12 | BIC: | 149.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 102.1798 | 71.757 | 1.424 | 0.180 | -54.165 258.525 |
C(dose)[T.1] | 50.2137 | 15.722 | 3.194 | 0.008 | 15.959 84.468 |
expression | -5.9927 | 12.217 | -0.491 | 0.633 | -32.612 20.627 |
Omnibus: | 2.874 | Durbin-Watson: | 0.780 |
Prob(Omnibus): | 0.238 | Jarque-Bera (JB): | 2.077 |
Skew: | -0.878 | Prob(JB): | 0.354 |
Kurtosis: | 2.513 | Cond. No. | 56.4 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:31:09 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.000 |
Model: | OLS | Adj. R-squared: | -0.077 |
Method: | Least Squares | F-statistic: | 0.002849 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.958 |
Time: | 03:31:09 | Log-Likelihood: | -75.298 |
No. Observations: | 15 | AIC: | 154.6 |
Df Residuals: | 13 | BIC: | 156.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 98.6421 | 93.762 | 1.052 | 0.312 | -103.919 301.203 |
expression | -0.8448 | 15.827 | -0.053 | 0.958 | -35.036 33.346 |
Omnibus: | 0.636 | Durbin-Watson: | 1.636 |
Prob(Omnibus): | 0.728 | Jarque-Bera (JB): | 0.592 |
Skew: | 0.041 | Prob(JB): | 0.744 |
Kurtosis: | 2.030 | Cond. No. | 56.2 |