AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.199 | 0.154 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.729 |
Model: | OLS | Adj. R-squared: | 0.686 |
Method: | Least Squares | F-statistic: | 17.02 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 1.30e-05 |
Time: | 05:12:58 | Log-Likelihood: | -98.098 |
No. Observations: | 23 | AIC: | 204.2 |
Df Residuals: | 19 | BIC: | 208.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 48.3547 | 106.775 | 0.453 | 0.656 | -175.128 271.837 |
C(dose)[T.1] | -228.9025 | 162.166 | -1.412 | 0.174 | -568.320 110.515 |
expression | 0.7665 | 13.963 | 0.055 | 0.957 | -28.458 29.991 |
expression:C(dose)[T.1] | 38.5690 | 21.727 | 1.775 | 0.092 | -6.906 84.045 |
Omnibus: | 0.210 | Durbin-Watson: | 1.634 |
Prob(Omnibus): | 0.900 | Jarque-Bera (JB): | 0.413 |
Skew: | -0.044 | Prob(JB): | 0.813 |
Kurtosis: | 2.350 | Cond. No. | 391. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.684 |
Model: | OLS | Adj. R-squared: | 0.652 |
Method: | Least Squares | F-statistic: | 21.63 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.98e-06 |
Time: | 05:12:58 | Log-Likelihood: | -99.863 |
No. Observations: | 23 | AIC: | 205.7 |
Df Residuals: | 20 | BIC: | 209.1 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -73.2942 | 86.174 | -0.851 | 0.405 | -253.049 106.461 |
C(dose)[T.1] | 58.5626 | 9.039 | 6.479 | 0.000 | 39.707 77.418 |
expression | 16.6954 | 11.258 | 1.483 | 0.154 | -6.789 40.180 |
Omnibus: | 0.211 | Durbin-Watson: | 1.896 |
Prob(Omnibus): | 0.900 | Jarque-Bera (JB): | 0.406 |
Skew: | 0.127 | Prob(JB): | 0.816 |
Kurtosis: | 2.401 | Cond. No. | 159. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:12:58 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.020 |
Model: | OLS | Adj. R-squared: | -0.026 |
Method: | Least Squares | F-statistic: | 0.4344 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.517 |
Time: | 05:12:58 | Log-Likelihood: | -112.87 |
No. Observations: | 23 | AIC: | 229.7 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 167.6104 | 133.545 | 1.255 | 0.223 | -110.111 445.332 |
expression | -11.7389 | 17.811 | -0.659 | 0.517 | -48.778 25.300 |
Omnibus: | 2.396 | Durbin-Watson: | 2.501 |
Prob(Omnibus): | 0.302 | Jarque-Bera (JB): | 1.473 |
Skew: | 0.355 | Prob(JB): | 0.479 |
Kurtosis: | 1.984 | Cond. No. | 143. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.854 | 0.198 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.547 |
Model: | OLS | Adj. R-squared: | 0.423 |
Method: | Least Squares | F-statistic: | 4.421 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0285 |
Time: | 05:12:58 | Log-Likelihood: | -69.367 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 11 | BIC: | 149.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 137.9009 | 121.292 | 1.137 | 0.280 | -129.060 404.862 |
C(dose)[T.1] | 227.8885 | 212.926 | 1.070 | 0.307 | -240.758 696.535 |
expression | -10.1541 | 17.406 | -0.583 | 0.571 | -48.464 28.156 |
expression:C(dose)[T.1] | -21.6011 | 28.262 | -0.764 | 0.461 | -83.805 40.602 |
Omnibus: | 1.437 | Durbin-Watson: | 1.347 |
Prob(Omnibus): | 0.487 | Jarque-Bera (JB): | 0.250 |
Skew: | 0.251 | Prob(JB): | 0.882 |
Kurtosis: | 3.386 | Cond. No. | 276. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.523 |
Model: | OLS | Adj. R-squared: | 0.443 |
Method: | Least Squares | F-statistic: | 6.567 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0118 |
Time: | 05:12:58 | Log-Likelihood: | -69.755 |
No. Observations: | 15 | AIC: | 145.5 |
Df Residuals: | 12 | BIC: | 147.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 194.7667 | 94.119 | 2.069 | 0.061 | -10.301 399.834 |
C(dose)[T.1] | 65.8217 | 19.069 | 3.452 | 0.005 | 24.274 107.369 |
expression | -18.3476 | 13.473 | -1.362 | 0.198 | -47.703 11.008 |
Omnibus: | 0.150 | Durbin-Watson: | 1.181 |
Prob(Omnibus): | 0.928 | Jarque-Bera (JB): | 0.120 |
Skew: | -0.137 | Prob(JB): | 0.942 |
Kurtosis: | 2.657 | Cond. No. | 98.8 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:12:58 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.049 |
Model: | OLS | Adj. R-squared: | -0.025 |
Method: | Least Squares | F-statistic: | 0.6627 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.430 |
Time: | 05:12:58 | Log-Likelihood: | -74.927 |
No. Observations: | 15 | AIC: | 153.9 |
Df Residuals: | 13 | BIC: | 155.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 8.8340 | 104.681 | 0.084 | 0.934 | -217.316 234.984 |
expression | 11.4275 | 14.038 | 0.814 | 0.430 | -18.899 41.754 |
Omnibus: | 0.351 | Durbin-Watson: | 1.312 |
Prob(Omnibus): | 0.839 | Jarque-Bera (JB): | 0.487 |
Skew: | -0.172 | Prob(JB): | 0.784 |
Kurtosis: | 2.187 | Cond. No. | 80.2 |