AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.275 0.605 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.656
Model: OLS Adj. R-squared: 0.601
Method: Least Squares F-statistic: 12.07
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000119
Time: 03:32:49 Log-Likelihood: -100.84
No. Observations: 23 AIC: 209.7
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 79.5323 42.073 1.890 0.074 -8.527 167.591
C(dose)[T.1] 25.2387 78.054 0.323 0.750 -138.129 188.607
expression -8.5617 14.071 -0.608 0.550 -38.012 20.889
expression:C(dose)[T.1] 9.6488 29.244 0.330 0.745 -51.559 70.857
Omnibus: 0.098 Durbin-Watson: 1.927
Prob(Omnibus): 0.952 Jarque-Bera (JB): 0.262
Skew: 0.127 Prob(JB): 0.877
Kurtosis: 2.543 Cond. No. 64.0

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.654
Model: OLS Adj. R-squared: 0.619
Method: Least Squares F-statistic: 18.89
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.47e-05
Time: 03:32:49 Log-Likelihood: -100.91
No. Observations: 23 AIC: 207.8
Df Residuals: 20 BIC: 211.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 72.9252 36.168 2.016 0.057 -2.519 148.369
C(dose)[T.1] 50.7702 9.989 5.082 0.000 29.933 71.608
expression -6.3279 12.057 -0.525 0.605 -31.478 18.823
Omnibus: 0.214 Durbin-Watson: 1.957
Prob(Omnibus): 0.899 Jarque-Bera (JB): 0.399
Skew: 0.153 Prob(JB): 0.819
Kurtosis: 2.432 Cond. No. 26.6

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 03:32:49 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.207
Model: OLS Adj. R-squared: 0.169
Method: Least Squares F-statistic: 5.472
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0293
Time: 03:32:49 Log-Likelihood: -110.44
No. Observations: 23 AIC: 224.9
Df Residuals: 21 BIC: 227.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 180.1299 43.403 4.150 0.000 89.868 270.392
expression -36.3311 15.531 -2.339 0.029 -68.629 -4.033
Omnibus: 0.903 Durbin-Watson: 2.178
Prob(Omnibus): 0.637 Jarque-Bera (JB): 0.866
Skew: 0.401 Prob(JB): 0.649
Kurtosis: 2.488 Cond. No. 21.2

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.133 0.721 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.456
Model: OLS Adj. R-squared: 0.308
Method: Least Squares F-statistic: 3.078
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0725
Time: 03:32:49 Log-Likelihood: -70.729
No. Observations: 15 AIC: 149.5
Df Residuals: 11 BIC: 152.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 44.1147 64.836 0.680 0.510 -98.588 186.817
C(dose)[T.1] 63.8798 90.590 0.705 0.495 -135.507 263.267
expression 5.7323 15.670 0.366 0.721 -28.756 40.221
expression:C(dose)[T.1] -3.7260 21.334 -0.175 0.865 -50.681 43.229
Omnibus: 2.283 Durbin-Watson: 0.876
Prob(Omnibus): 0.319 Jarque-Bera (JB): 1.611
Skew: -0.772 Prob(JB): 0.447
Kurtosis: 2.558 Cond. No. 67.6

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.455
Model: OLS Adj. R-squared: 0.364
Method: Least Squares F-statistic: 5.006
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0263
Time: 03:32:49 Log-Likelihood: -70.750
No. Observations: 15 AIC: 147.5
Df Residuals: 12 BIC: 149.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 52.2902 43.011 1.216 0.247 -41.422 146.002
C(dose)[T.1] 48.3230 15.835 3.052 0.010 13.822 82.824
expression 3.7221 10.195 0.365 0.721 -18.491 25.935
Omnibus: 2.052 Durbin-Watson: 0.844
Prob(Omnibus): 0.358 Jarque-Bera (JB): 1.513
Skew: -0.732 Prob(JB): 0.469
Kurtosis: 2.471 Cond. No. 24.9

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 03:32:49 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.032
Model: OLS Adj. R-squared: -0.043
Method: Least Squares F-statistic: 0.4260
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.525
Time: 03:32:49 Log-Likelihood: -75.058
No. Observations: 15 AIC: 154.1
Df Residuals: 13 BIC: 155.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 58.3573 55.013 1.061 0.308 -60.490 177.205
expression 8.4225 12.904 0.653 0.525 -19.455 36.300
Omnibus: 0.462 Durbin-Watson: 1.687
Prob(Omnibus): 0.794 Jarque-Bera (JB): 0.548
Skew: 0.192 Prob(JB): 0.760
Kurtosis: 2.146 Cond. No. 24.7