AIM Score vs. Gene Expression 
		Full X range:
		
 
		 
			
		
		Auto X range:
		
 
		
		Group Comparisons: Boxplots
		 
		 
		
		
		 CP73 
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.275 | 0.605 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.656 | 
  | Model: | OLS | Adj. R-squared: | 0.601 | 
  | Method: | Least Squares | F-statistic: | 12.07 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.000119 | 
  | Time: | 01:47:14 | Log-Likelihood: | -100.84 | 
  | No. Observations: | 23 | AIC: | 209.7 | 
  | Df Residuals: | 19 | BIC: | 214.2 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 79.5323 | 42.073 | 1.890 | 0.074 | -8.527   167.591 | 
  | C(dose)[T.1] | 25.2387 | 78.054 | 0.323 | 0.750 | -138.129   188.607 | 
  | expression | -8.5617 | 14.071 | -0.608 | 0.550 | -38.012    20.889 | 
  | expression:C(dose)[T.1] | 9.6488 | 29.244 | 0.330 | 0.745 | -51.559    70.857 | 
  | Omnibus: | 0.098 | Durbin-Watson: | 1.927 | 
  | Prob(Omnibus): | 0.952 | Jarque-Bera (JB): | 0.262 | 
  | Skew: | 0.127 | Prob(JB): | 0.877 | 
  | Kurtosis: | 2.543 | Cond. No. | 64.0 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.654 | 
  | Model: | OLS | Adj. R-squared: | 0.619 | 
  | Method: | Least Squares | F-statistic: | 18.89 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 2.47e-05 | 
  | Time: | 01:47:14 | Log-Likelihood: | -100.91 | 
  | No. Observations: | 23 | AIC: | 207.8 | 
  | Df Residuals: | 20 | BIC: | 211.2 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 72.9252 | 36.168 | 2.016 | 0.057 | -2.519   148.369 | 
  | C(dose)[T.1] | 50.7702 | 9.989 | 5.082 | 0.000 | 29.933    71.608 | 
  | expression | -6.3279 | 12.057 | -0.525 | 0.605 | -31.478    18.823 | 
  | Omnibus: | 0.214 | Durbin-Watson: | 1.957 | 
  | Prob(Omnibus): | 0.899 | Jarque-Bera (JB): | 0.399 | 
  | Skew: | 0.153 | Prob(JB): | 0.819 | 
  | Kurtosis: | 2.432 | Cond. No. | 26.6 | 
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.649 | 
  | Model: | OLS | Adj. R-squared: | 0.632 | 
  | Method: | Least Squares | F-statistic: | 38.84 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 3.51e-06 | 
  | Time: | 01:47:14 | Log-Likelihood: | -101.06 | 
  | No. Observations: | 23 | AIC: | 206.1 | 
  | Df Residuals: | 21 | BIC: | 208.4 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900    66.517 | 
  | C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539    71.135 | 
  | Omnibus: | 0.322 | Durbin-Watson: | 1.888 | 
  | Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 | 
  | Skew: | 0.060 | Prob(JB): | 0.785 | 
  | Kurtosis: | 2.299 | Cond. No. | 2.57 | 
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.207 | 
  | Model: | OLS | Adj. R-squared: | 0.169 | 
  | Method: | Least Squares | F-statistic: | 5.472 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0293 | 
  | Time: | 01:47:14 | Log-Likelihood: | -110.44 | 
  | No. Observations: | 23 | AIC: | 224.9 | 
  | Df Residuals: | 21 | BIC: | 227.2 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 180.1299 | 43.403 | 4.150 | 0.000 | 89.868   270.392 | 
  | expression | -36.3311 | 15.531 | -2.339 | 0.029 | -68.629    -4.033 | 
  | Omnibus: | 0.903 | Durbin-Watson: | 2.178 | 
  | Prob(Omnibus): | 0.637 | Jarque-Bera (JB): | 0.866 | 
  | Skew: | 0.401 | Prob(JB): | 0.649 | 
  | Kurtosis: | 2.488 | Cond. No. | 21.2 | 
			 
		
			
		
		 
	
		
		 CP101 
		
		 Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose) 
		
		
	
		
		 | F-statistic | p-value | df difference | 
		 | 0.133 | 0.721 | 1.0 | 
		
		
		
		
		
			Model: 
 AIM ~ expression + C(dose) + expression:C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.456 | 
  | Model: | OLS | Adj. R-squared: | 0.308 | 
  | Method: | Least Squares | F-statistic: | 3.078 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0725 | 
  | Time: | 01:47:14 | Log-Likelihood: | -70.729 | 
  | No. Observations: | 15 | AIC: | 149.5 | 
  | Df Residuals: | 11 | BIC: | 152.3 | 
  | Df Model: | 3 |  |  | 
             |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 44.1147 | 64.836 | 0.680 | 0.510 | -98.588   186.817 | 
  | C(dose)[T.1] | 63.8798 | 90.590 | 0.705 | 0.495 | -135.507   263.267 | 
  | expression | 5.7323 | 15.670 | 0.366 | 0.721 | -28.756    40.221 | 
  | expression:C(dose)[T.1] | -3.7260 | 21.334 | -0.175 | 0.865 | -50.681    43.229 | 
  | Omnibus: | 2.283 | Durbin-Watson: | 0.876 | 
  | Prob(Omnibus): | 0.319 | Jarque-Bera (JB): | 1.611 | 
  | Skew: | -0.772 | Prob(JB): | 0.447 | 
  | Kurtosis: | 2.558 | Cond. No. | 67.6 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression + C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.455 | 
  | Model: | OLS | Adj. R-squared: | 0.364 | 
  | Method: | Least Squares | F-statistic: | 5.006 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.0263 | 
  | Time: | 01:47:14 | Log-Likelihood: | -70.750 | 
  | No. Observations: | 15 | AIC: | 147.5 | 
  | Df Residuals: | 12 | BIC: | 149.6 | 
  | Df Model: | 2 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 52.2902 | 43.011 | 1.216 | 0.247 | -41.422   146.002 | 
  | C(dose)[T.1] | 48.3230 | 15.835 | 3.052 | 0.010 | 13.822    82.824 | 
  | expression | 3.7221 | 10.195 | 0.365 | 0.721 | -18.491    25.935 | 
  | Omnibus: | 2.052 | Durbin-Watson: | 0.844 | 
  | Prob(Omnibus): | 0.358 | Jarque-Bera (JB): | 1.513 | 
  | Skew: | -0.732 | Prob(JB): | 0.469 | 
  | Kurtosis: | 2.471 | Cond. No. | 24.9 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ C(dose)
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.449 | 
  | Model: | OLS | Adj. R-squared: | 0.406 | 
  | Method: | Least Squares | F-statistic: | 10.58 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.00629 | 
  | Time: | 01:47:14 | Log-Likelihood: | -70.833 | 
  | No. Observations: | 15 | AIC: | 145.7 | 
  | Df Residuals: | 13 | BIC: | 147.1 | 
  | Df Model: | 1 |  |  | 
        |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570    91.287 | 
  | C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527    81.866 | 
  | Omnibus: | 2.713 | Durbin-Watson: | 0.810 | 
  | Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 | 
  | Skew: | -0.843 | Prob(JB): | 0.393 | 
  | Kurtosis: | 2.619 | Cond. No. | 2.70 | 
		
			 
		
			
		
		
			Model: 
 AIM ~ expression
			
			
OLS Regression Results
  | Dep. Variable: | AIM | R-squared: | 0.032 | 
  | Model: | OLS | Adj. R-squared: | -0.043 | 
  | Method: | Least Squares | F-statistic: | 0.4260 | 
  | Date: | Fri, 31 Oct 2025 | Prob (F-statistic): | 0.525 | 
  | Time: | 01:47:14 | Log-Likelihood: | -75.058 | 
  | No. Observations: | 15 | AIC: | 154.1 | 
  | Df Residuals: | 13 | BIC: | 155.5 | 
  | Df Model: | 1 |  |  | 
       |  | coef | std err | t | P>|t| | [95.0% Conf. Int.] | 
  | Intercept | 58.3573 | 55.013 | 1.061 | 0.308 | -60.490   177.205 | 
  | expression | 8.4225 | 12.904 | 0.653 | 0.525 | -19.455    36.300 | 
  | Omnibus: | 0.462 | Durbin-Watson: | 1.687 | 
  | Prob(Omnibus): | 0.794 | Jarque-Bera (JB): | 0.548 | 
  | Skew: | 0.192 | Prob(JB): | 0.760 | 
  | Kurtosis: | 2.146 | Cond. No. | 24.7 |