AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
2.692 0.116 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.709
Model: OLS Adj. R-squared: 0.663
Method: Least Squares F-statistic: 15.42
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.52e-05
Time: 05:03:37 Log-Likelihood: -98.916
No. Observations: 23 AIC: 205.8
Df Residuals: 19 BIC: 210.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -875.2031 473.583 -1.848 0.080 -1866.423 116.017
C(dose)[T.1] 857.1644 749.327 1.144 0.267 -711.196 2425.524
expression 81.7341 41.645 1.963 0.064 -5.429 168.898
expression:C(dose)[T.1] -70.8836 65.202 -1.087 0.291 -207.353 65.586
Omnibus: 0.189 Durbin-Watson: 1.869
Prob(Omnibus): 0.910 Jarque-Bera (JB): 0.072
Skew: 0.108 Prob(JB): 0.965
Kurtosis: 2.832 Cond. No. 2.64e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.691
Model: OLS Adj. R-squared: 0.660
Method: Least Squares F-statistic: 22.33
Date: Thu, 21 Nov 2024 Prob (F-statistic): 8.01e-06
Time: 05:03:37 Log-Likelihood: -99.610
No. Observations: 23 AIC: 205.2
Df Residuals: 20 BIC: 208.6
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -546.3933 366.072 -1.493 0.151 -1310.006 217.219
C(dose)[T.1] 42.6253 10.507 4.057 0.001 20.708 64.543
expression 52.8180 32.189 1.641 0.116 -14.327 119.963
Omnibus: 0.768 Durbin-Watson: 1.880
Prob(Omnibus): 0.681 Jarque-Bera (JB): 0.488
Skew: 0.346 Prob(JB): 0.783
Kurtosis: 2.824 Cond. No. 1.03e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:03:37 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.436
Model: OLS Adj. R-squared: 0.409
Method: Least Squares F-statistic: 16.25
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000604
Time: 05:03:37 Log-Likelihood: -106.51
No. Observations: 23 AIC: 217.0
Df Residuals: 21 BIC: 219.3
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -1456.4391 381.160 -3.821 0.001 -2249.105 -663.773
expression 133.9498 33.233 4.031 0.001 64.838 203.062
Omnibus: 5.832 Durbin-Watson: 1.905
Prob(Omnibus): 0.054 Jarque-Bera (JB): 4.090
Skew: 1.011 Prob(JB): 0.129
Kurtosis: 3.421 Cond. No. 813.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.499 0.493 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.492
Model: OLS Adj. R-squared: 0.354
Method: Least Squares F-statistic: 3.552
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0513
Time: 05:03:37 Log-Likelihood: -70.219
No. Observations: 15 AIC: 148.4
Df Residuals: 11 BIC: 151.3
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 508.8379 456.071 1.116 0.288 -494.967 1512.643
C(dose)[T.1] -404.0087 665.421 -0.607 0.556 -1868.591 1060.573
expression -40.4059 41.735 -0.968 0.354 -132.263 51.451
expression:C(dose)[T.1] 41.4929 61.110 0.679 0.511 -93.010 175.996
Omnibus: 2.041 Durbin-Watson: 0.771
Prob(Omnibus): 0.360 Jarque-Bera (JB): 1.427
Skew: -0.725 Prob(JB): 0.490
Kurtosis: 2.575 Cond. No. 1.21e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.471
Model: OLS Adj. R-squared: 0.383
Method: Least Squares F-statistic: 5.338
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0220
Time: 05:03:37 Log-Likelihood: -70.527
No. Observations: 15 AIC: 147.1
Df Residuals: 12 BIC: 149.2
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 297.4237 325.672 0.913 0.379 -412.154 1007.001
C(dose)[T.1] 47.6712 15.572 3.061 0.010 13.742 81.600
expression -21.0534 29.794 -0.707 0.493 -85.968 43.861
Omnibus: 3.823 Durbin-Watson: 0.669
Prob(Omnibus): 0.148 Jarque-Bera (JB): 2.315
Skew: -0.962 Prob(JB): 0.314
Kurtosis: 2.974 Cond. No. 465.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:03:37 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.058
Model: OLS Adj. R-squared: -0.015
Method: Least Squares F-statistic: 0.7933
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.389
Time: 05:03:37 Log-Likelihood: -74.856
No. Observations: 15 AIC: 153.7
Df Residuals: 13 BIC: 155.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 460.4632 411.944 1.118 0.284 -429.488 1350.414
expression -33.6952 37.832 -0.891 0.389 -115.426 48.035
Omnibus: 3.010 Durbin-Watson: 1.654
Prob(Omnibus): 0.222 Jarque-Bera (JB): 1.153
Skew: 0.127 Prob(JB): 0.562
Kurtosis: 1.666 Cond. No. 459.