AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.692 | 0.116 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.709 |
Model: | OLS | Adj. R-squared: | 0.663 |
Method: | Least Squares | F-statistic: | 15.42 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.52e-05 |
Time: | 05:03:37 | Log-Likelihood: | -98.916 |
No. Observations: | 23 | AIC: | 205.8 |
Df Residuals: | 19 | BIC: | 210.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -875.2031 | 473.583 | -1.848 | 0.080 | -1866.423 116.017 |
C(dose)[T.1] | 857.1644 | 749.327 | 1.144 | 0.267 | -711.196 2425.524 |
expression | 81.7341 | 41.645 | 1.963 | 0.064 | -5.429 168.898 |
expression:C(dose)[T.1] | -70.8836 | 65.202 | -1.087 | 0.291 | -207.353 65.586 |
Omnibus: | 0.189 | Durbin-Watson: | 1.869 |
Prob(Omnibus): | 0.910 | Jarque-Bera (JB): | 0.072 |
Skew: | 0.108 | Prob(JB): | 0.965 |
Kurtosis: | 2.832 | Cond. No. | 2.64e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.660 |
Method: | Least Squares | F-statistic: | 22.33 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 8.01e-06 |
Time: | 05:03:37 | Log-Likelihood: | -99.610 |
No. Observations: | 23 | AIC: | 205.2 |
Df Residuals: | 20 | BIC: | 208.6 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -546.3933 | 366.072 | -1.493 | 0.151 | -1310.006 217.219 |
C(dose)[T.1] | 42.6253 | 10.507 | 4.057 | 0.001 | 20.708 64.543 |
expression | 52.8180 | 32.189 | 1.641 | 0.116 | -14.327 119.963 |
Omnibus: | 0.768 | Durbin-Watson: | 1.880 |
Prob(Omnibus): | 0.681 | Jarque-Bera (JB): | 0.488 |
Skew: | 0.346 | Prob(JB): | 0.783 |
Kurtosis: | 2.824 | Cond. No. | 1.03e+03 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:03:37 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.436 |
Model: | OLS | Adj. R-squared: | 0.409 |
Method: | Least Squares | F-statistic: | 16.25 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000604 |
Time: | 05:03:37 | Log-Likelihood: | -106.51 |
No. Observations: | 23 | AIC: | 217.0 |
Df Residuals: | 21 | BIC: | 219.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -1456.4391 | 381.160 | -3.821 | 0.001 | -2249.105 -663.773 |
expression | 133.9498 | 33.233 | 4.031 | 0.001 | 64.838 203.062 |
Omnibus: | 5.832 | Durbin-Watson: | 1.905 |
Prob(Omnibus): | 0.054 | Jarque-Bera (JB): | 4.090 |
Skew: | 1.011 | Prob(JB): | 0.129 |
Kurtosis: | 3.421 | Cond. No. | 813. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.499 | 0.493 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.492 |
Model: | OLS | Adj. R-squared: | 0.354 |
Method: | Least Squares | F-statistic: | 3.552 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0513 |
Time: | 05:03:37 | Log-Likelihood: | -70.219 |
No. Observations: | 15 | AIC: | 148.4 |
Df Residuals: | 11 | BIC: | 151.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 508.8379 | 456.071 | 1.116 | 0.288 | -494.967 1512.643 |
C(dose)[T.1] | -404.0087 | 665.421 | -0.607 | 0.556 | -1868.591 1060.573 |
expression | -40.4059 | 41.735 | -0.968 | 0.354 | -132.263 51.451 |
expression:C(dose)[T.1] | 41.4929 | 61.110 | 0.679 | 0.511 | -93.010 175.996 |
Omnibus: | 2.041 | Durbin-Watson: | 0.771 |
Prob(Omnibus): | 0.360 | Jarque-Bera (JB): | 1.427 |
Skew: | -0.725 | Prob(JB): | 0.490 |
Kurtosis: | 2.575 | Cond. No. | 1.21e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.471 |
Model: | OLS | Adj. R-squared: | 0.383 |
Method: | Least Squares | F-statistic: | 5.338 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0220 |
Time: | 05:03:37 | Log-Likelihood: | -70.527 |
No. Observations: | 15 | AIC: | 147.1 |
Df Residuals: | 12 | BIC: | 149.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 297.4237 | 325.672 | 0.913 | 0.379 | -412.154 1007.001 |
C(dose)[T.1] | 47.6712 | 15.572 | 3.061 | 0.010 | 13.742 81.600 |
expression | -21.0534 | 29.794 | -0.707 | 0.493 | -85.968 43.861 |
Omnibus: | 3.823 | Durbin-Watson: | 0.669 |
Prob(Omnibus): | 0.148 | Jarque-Bera (JB): | 2.315 |
Skew: | -0.962 | Prob(JB): | 0.314 |
Kurtosis: | 2.974 | Cond. No. | 465. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:03:37 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.058 |
Model: | OLS | Adj. R-squared: | -0.015 |
Method: | Least Squares | F-statistic: | 0.7933 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.389 |
Time: | 05:03:37 | Log-Likelihood: | -74.856 |
No. Observations: | 15 | AIC: | 153.7 |
Df Residuals: | 13 | BIC: | 155.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 460.4632 | 411.944 | 1.118 | 0.284 | -429.488 1350.414 |
expression | -33.6952 | 37.832 | -0.891 | 0.389 | -115.426 48.035 |
Omnibus: | 3.010 | Durbin-Watson: | 1.654 |
Prob(Omnibus): | 0.222 | Jarque-Bera (JB): | 1.153 |
Skew: | 0.127 | Prob(JB): | 0.562 |
Kurtosis: | 1.666 | Cond. No. | 459. |