AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.039 | 0.846 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.691 |
Model: | OLS | Adj. R-squared: | 0.642 |
Method: | Least Squares | F-statistic: | 14.15 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 4.41e-05 |
Time: | 05:22:49 | Log-Likelihood: | -99.608 |
No. Observations: | 23 | AIC: | 207.2 |
Df Residuals: | 19 | BIC: | 211.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -104.3542 | 161.693 | -0.645 | 0.526 | -442.781 234.072 |
C(dose)[T.1] | 424.2053 | 233.200 | 1.819 | 0.085 | -63.889 912.299 |
expression | 23.5763 | 24.026 | 0.981 | 0.339 | -26.711 73.863 |
expression:C(dose)[T.1] | -53.7881 | 33.887 | -1.587 | 0.129 | -124.714 17.138 |
Omnibus: | 0.676 | Durbin-Watson: | 1.994 |
Prob(Omnibus): | 0.713 | Jarque-Bera (JB): | 0.693 |
Skew: | -0.168 | Prob(JB): | 0.707 |
Kurtosis: | 2.219 | Cond. No. | 504. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.650 |
Model: | OLS | Adj. R-squared: | 0.615 |
Method: | Least Squares | F-statistic: | 18.55 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.78e-05 |
Time: | 05:22:49 | Log-Likelihood: | -101.04 |
No. Observations: | 23 | AIC: | 208.1 |
Df Residuals: | 20 | BIC: | 211.5 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 77.4952 | 118.356 | 0.655 | 0.520 | -169.391 324.381 |
C(dose)[T.1] | 54.3820 | 10.242 | 5.310 | 0.000 | 33.019 75.745 |
expression | -3.4625 | 17.575 | -0.197 | 0.846 | -40.123 33.198 |
Omnibus: | 0.271 | Durbin-Watson: | 1.850 |
Prob(Omnibus): | 0.873 | Jarque-Bera (JB): | 0.454 |
Skew: | 0.058 | Prob(JB): | 0.797 |
Kurtosis: | 2.322 | Cond. No. | 191. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:22:49 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.156 |
Model: | OLS | Adj. R-squared: | 0.116 |
Method: | Least Squares | F-statistic: | 3.880 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0622 |
Time: | 05:22:49 | Log-Likelihood: | -111.16 |
No. Observations: | 23 | AIC: | 226.3 |
Df Residuals: | 21 | BIC: | 228.6 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -228.4917 | 156.614 | -1.459 | 0.159 | -554.189 97.205 |
expression | 44.8642 | 22.777 | 1.970 | 0.062 | -2.503 92.232 |
Omnibus: | 1.848 | Durbin-Watson: | 2.578 |
Prob(Omnibus): | 0.397 | Jarque-Bera (JB): | 1.554 |
Skew: | 0.507 | Prob(JB): | 0.460 |
Kurtosis: | 2.230 | Cond. No. | 166. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.775 | 0.396 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.497 |
Model: | OLS | Adj. R-squared: | 0.360 |
Method: | Least Squares | F-statistic: | 3.622 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0488 |
Time: | 05:22:49 | Log-Likelihood: | -70.147 |
No. Observations: | 15 | AIC: | 148.3 |
Df Residuals: | 11 | BIC: | 151.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -40.7550 | 217.026 | -0.188 | 0.854 | -518.426 436.916 |
C(dose)[T.1] | -223.0721 | 476.672 | -0.468 | 0.649 | -1272.220 826.075 |
expression | 16.1711 | 32.395 | 0.499 | 0.627 | -55.131 87.473 |
expression:C(dose)[T.1] | 40.1064 | 70.626 | 0.568 | 0.582 | -115.341 195.554 |
Omnibus: | 0.834 | Durbin-Watson: | 1.025 |
Prob(Omnibus): | 0.659 | Jarque-Bera (JB): | 0.708 |
Skew: | -0.456 | Prob(JB): | 0.702 |
Kurtosis: | 2.450 | Cond. No. | 499. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.482 |
Model: | OLS | Adj. R-squared: | 0.396 |
Method: | Least Squares | F-statistic: | 5.587 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0193 |
Time: | 05:22:49 | Log-Likelihood: | -70.364 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 12 | BIC: | 148.9 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -97.2056 | 187.395 | -0.519 | 0.613 | -505.505 311.094 |
C(dose)[T.1] | 47.4650 | 15.381 | 3.086 | 0.009 | 13.952 80.978 |
expression | 24.6093 | 27.962 | 0.880 | 0.396 | -36.315 85.533 |
Omnibus: | 2.068 | Durbin-Watson: | 0.857 |
Prob(Omnibus): | 0.356 | Jarque-Bera (JB): | 1.525 |
Skew: | -0.735 | Prob(JB): | 0.466 |
Kurtosis: | 2.470 | Cond. No. | 170. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:22:49 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.071 |
Model: | OLS | Adj. R-squared: | -0.000 |
Method: | Least Squares | F-statistic: | 0.9979 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.336 |
Time: | 05:22:49 | Log-Likelihood: | -74.745 |
No. Observations: | 15 | AIC: | 153.5 |
Df Residuals: | 13 | BIC: | 154.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -146.1383 | 240.256 | -0.608 | 0.553 | -665.181 372.904 |
expression | 35.6458 | 35.683 | 0.999 | 0.336 | -41.443 112.735 |
Omnibus: | 0.088 | Durbin-Watson: | 1.780 |
Prob(Omnibus): | 0.957 | Jarque-Bera (JB): | 0.306 |
Skew: | 0.088 | Prob(JB): | 0.858 |
Kurtosis: | 2.323 | Cond. No. | 169. |