AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
3.353 | 0.082 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.700 |
Model: | OLS | Adj. R-squared: | 0.653 |
Method: | Least Squares | F-statistic: | 14.81 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.28e-05 |
Time: | 05:08:06 | Log-Likelihood: | -99.242 |
No. Observations: | 23 | AIC: | 206.5 |
Df Residuals: | 19 | BIC: | 211.0 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -50.0469 | 115.471 | -0.433 | 0.670 | -291.730 191.636 |
C(dose)[T.1] | 29.7309 | 141.640 | 0.210 | 0.836 | -266.726 326.187 |
expression | 13.5718 | 15.013 | 0.904 | 0.377 | -17.851 44.995 |
expression:C(dose)[T.1] | 4.8264 | 19.078 | 0.253 | 0.803 | -35.104 44.757 |
Omnibus: | 0.290 | Durbin-Watson: | 1.659 |
Prob(Omnibus): | 0.865 | Jarque-Bera (JB): | 0.465 |
Skew: | -0.042 | Prob(JB): | 0.792 |
Kurtosis: | 2.308 | Cond. No. | 349. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.699 |
Model: | OLS | Adj. R-squared: | 0.669 |
Method: | Least Squares | F-statistic: | 23.27 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 6.02e-06 |
Time: | 05:08:06 | Log-Likelihood: | -99.280 |
No. Observations: | 23 | AIC: | 204.6 |
Df Residuals: | 20 | BIC: | 208.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -73.0071 | 69.701 | -1.047 | 0.307 | -218.400 72.386 |
C(dose)[T.1] | 65.4610 | 10.474 | 6.250 | 0.000 | 43.613 87.310 |
expression | 16.5607 | 9.044 | 1.831 | 0.082 | -2.305 35.426 |
Omnibus: | 0.430 | Durbin-Watson: | 1.639 |
Prob(Omnibus): | 0.807 | Jarque-Bera (JB): | 0.545 |
Skew: | -0.059 | Prob(JB): | 0.762 |
Kurtosis: | 2.256 | Cond. No. | 130. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 05:08:06 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.112 |
Model: | OLS | Adj. R-squared: | 0.070 |
Method: | Least Squares | F-statistic: | 2.661 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.118 |
Time: | 05:08:06 | Log-Likelihood: | -111.73 |
No. Observations: | 23 | AIC: | 227.5 |
Df Residuals: | 21 | BIC: | 229.7 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 220.2663 | 86.431 | 2.548 | 0.019 | 40.523 400.010 |
expression | -19.1702 | 11.752 | -1.631 | 0.118 | -43.611 5.270 |
Omnibus: | 3.600 | Durbin-Watson: | 2.164 |
Prob(Omnibus): | 0.165 | Jarque-Bera (JB): | 1.799 |
Skew: | 0.381 | Prob(JB): | 0.407 |
Kurtosis: | 1.861 | Cond. No. | 95.2 |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.215 | 0.292 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.580 |
Model: | OLS | Adj. R-squared: | 0.466 |
Method: | Least Squares | F-statistic: | 5.067 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0191 |
Time: | 05:08:06 | Log-Likelihood: | -68.791 |
No. Observations: | 15 | AIC: | 145.6 |
Df Residuals: | 11 | BIC: | 148.4 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 253.3241 | 343.871 | 0.737 | 0.477 | -503.531 1010.179 |
C(dose)[T.1] | -557.0585 | 417.660 | -1.334 | 0.209 | -1476.322 362.205 |
expression | -21.1373 | 39.082 | -0.541 | 0.599 | -107.155 64.881 |
expression:C(dose)[T.1] | 69.0844 | 47.510 | 1.454 | 0.174 | -35.485 173.653 |
Omnibus: | 1.457 | Durbin-Watson: | 0.861 |
Prob(Omnibus): | 0.483 | Jarque-Bera (JB): | 0.836 |
Skew: | -0.079 | Prob(JB): | 0.659 |
Kurtosis: | 1.855 | Cond. No. | 747. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.499 |
Model: | OLS | Adj. R-squared: | 0.416 |
Method: | Least Squares | F-statistic: | 5.987 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0157 |
Time: | 05:08:06 | Log-Likelihood: | -70.110 |
No. Observations: | 15 | AIC: | 146.2 |
Df Residuals: | 12 | BIC: | 148.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -157.8030 | 204.609 | -0.771 | 0.455 | -603.608 288.002 |
C(dose)[T.1] | 49.9021 | 15.012 | 3.324 | 0.006 | 17.193 82.611 |
expression | 25.6099 | 23.232 | 1.102 | 0.292 | -25.008 76.228 |
Omnibus: | 2.806 | Durbin-Watson: | 0.968 |
Prob(Omnibus): | 0.246 | Jarque-Bera (JB): | 2.040 |
Skew: | -0.867 | Prob(JB): | 0.361 |
Kurtosis: | 2.494 | Cond. No. | 244. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 05:08:06 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.039 |
Model: | OLS | Adj. R-squared: | -0.035 |
Method: | Least Squares | F-statistic: | 0.5214 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.483 |
Time: | 05:08:06 | Log-Likelihood: | -75.005 |
No. Observations: | 15 | AIC: | 154.0 |
Df Residuals: | 13 | BIC: | 155.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -102.2774 | 271.540 | -0.377 | 0.713 | -688.904 484.349 |
expression | 22.3171 | 30.906 | 0.722 | 0.483 | -44.452 89.086 |
Omnibus: | 0.142 | Durbin-Watson: | 1.838 |
Prob(Omnibus): | 0.931 | Jarque-Bera (JB): | 0.179 |
Skew: | -0.167 | Prob(JB): | 0.914 |
Kurtosis: | 2.582 | Cond. No. | 243. |