AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.535 0.473 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.702
Model: OLS Adj. R-squared: 0.655
Method: Least Squares F-statistic: 14.90
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.15e-05
Time: 22:45:54 Log-Likelihood: -99.192
No. Observations: 23 AIC: 206.4
Df Residuals: 19 BIC: 210.9
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -41.5543 54.194 -0.767 0.453 -154.984 71.875
C(dose)[T.1] 167.4732 68.372 2.449 0.024 24.369 310.577
expression 21.8394 12.290 1.777 0.092 -3.884 47.562
expression:C(dose)[T.1] -26.2236 15.746 -1.665 0.112 -59.181 6.734
Omnibus: 0.003 Durbin-Watson: 1.877
Prob(Omnibus): 0.999 Jarque-Bera (JB): 0.134
Skew: 0.012 Prob(JB): 0.935
Kurtosis: 2.627 Cond. No. 102.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.26
Date: Thu, 03 Apr 2025 Prob (F-statistic): 2.18e-05
Time: 22:45:54 Log-Likelihood: -100.76
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 28.4940 35.657 0.799 0.434 -45.886 102.874
C(dose)[T.1] 54.4753 8.794 6.195 0.000 36.132 72.818
expression 5.8643 8.016 0.732 0.473 -10.858 22.586
Omnibus: 0.344 Durbin-Watson: 1.909
Prob(Omnibus): 0.842 Jarque-Bera (JB): 0.505
Skew: 0.141 Prob(JB): 0.777
Kurtosis: 2.332 Cond. No. 37.8

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 03 Apr 2025 Prob (F-statistic): 3.51e-06
Time: 22:45:55 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.002
Model: OLS Adj. R-squared: -0.045
Method: Least Squares F-statistic: 0.04934
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.826
Time: 22:45:55 Log-Likelihood: -113.08
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 92.2593 56.920 1.621 0.120 -26.112 210.631
expression -2.9221 13.155 -0.222 0.826 -30.279 24.435
Omnibus: 2.923 Durbin-Watson: 2.448
Prob(Omnibus): 0.232 Jarque-Bera (JB): 1.415
Skew: 0.235 Prob(JB): 0.493
Kurtosis: 1.880 Cond. No. 36.0

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.577 0.462 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.570
Model: OLS Adj. R-squared: 0.452
Method: Least Squares F-statistic: 4.855
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0218
Time: 22:45:55 Log-Likelihood: -68.975
No. Observations: 15 AIC: 146.0
Df Residuals: 11 BIC: 148.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 225.7310 98.423 2.293 0.043 9.103 442.358
C(dose)[T.1] -185.4026 148.543 -1.248 0.238 -512.343 141.538
expression -35.4684 21.924 -1.618 0.134 -83.722 12.785
expression:C(dose)[T.1] 53.6229 34.291 1.564 0.146 -21.852 129.097
Omnibus: 7.128 Durbin-Watson: 1.209
Prob(Omnibus): 0.028 Jarque-Bera (JB): 3.828
Skew: -1.090 Prob(JB): 0.147
Kurtosis: 4.173 Cond. No. 120.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.474
Model: OLS Adj. R-squared: 0.386
Method: Least Squares F-statistic: 5.408
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.0212
Time: 22:45:55 Log-Likelihood: -70.481
No. Observations: 15 AIC: 147.0
Df Residuals: 12 BIC: 149.1
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 127.9047 80.429 1.590 0.138 -47.335 303.145
C(dose)[T.1] 45.6657 16.062 2.843 0.015 10.669 80.662
expression -13.5500 17.844 -0.759 0.462 -52.429 25.329
Omnibus: 1.853 Durbin-Watson: 0.851
Prob(Omnibus): 0.396 Jarque-Bera (JB): 1.422
Skew: -0.689 Prob(JB): 0.491
Kurtosis: 2.389 Cond. No. 48.3

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.00629
Time: 22:45:55 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.120
Model: OLS Adj. R-squared: 0.052
Method: Least Squares F-statistic: 1.769
Date: Thu, 03 Apr 2025 Prob (F-statistic): 0.206
Time: 22:45:55 Log-Likelihood: -74.343
No. Observations: 15 AIC: 152.7
Df Residuals: 13 BIC: 154.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 215.7625 92.293 2.338 0.036 16.375 415.150
expression -28.2353 21.229 -1.330 0.206 -74.098 17.627
Omnibus: 3.855 Durbin-Watson: 1.553
Prob(Omnibus): 0.146 Jarque-Bera (JB): 1.773
Skew: 0.526 Prob(JB): 0.412
Kurtosis: 1.684 Cond. No. 44.3