AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.295 | 0.593 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.30 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000106 |
Time: | 03:40:46 | Log-Likelihood: | -100.69 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -115.3199 | 215.193 | -0.536 | 0.598 | -565.723 335.083 |
C(dose)[T.1] | 226.0705 | 307.658 | 0.735 | 0.471 | -417.865 870.006 |
expression | 17.8153 | 22.605 | 0.788 | 0.440 | -29.497 65.128 |
expression:C(dose)[T.1] | -18.1303 | 31.264 | -0.580 | 0.569 | -83.566 47.305 |
Omnibus: | 0.558 | Durbin-Watson: | 1.774 |
Prob(Omnibus): | 0.757 | Jarque-Bera (JB): | 0.604 |
Skew: | -0.033 | Prob(JB): | 0.739 |
Kurtosis: | 2.209 | Cond. No. | 906. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.91 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.45e-05 |
Time: | 03:40:46 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -25.1251 | 146.233 | -0.172 | 0.865 | -330.162 279.911 |
C(dose)[T.1] | 47.8287 | 13.368 | 3.578 | 0.002 | 19.943 75.715 |
expression | 8.3370 | 15.354 | 0.543 | 0.593 | -23.691 40.365 |
Omnibus: | 0.051 | Durbin-Watson: | 1.850 |
Prob(Omnibus): | 0.975 | Jarque-Bera (JB): | 0.256 |
Skew: | -0.063 | Prob(JB): | 0.880 |
Kurtosis: | 2.499 | Cond. No. | 336. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:40:46 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.433 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 16.02 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000645 |
Time: | 03:40:46 | Log-Likelihood: | -106.58 |
No. Observations: | 23 | AIC: | 217.2 |
Df Residuals: | 21 | BIC: | 219.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -412.1213 | 122.986 | -3.351 | 0.003 | -667.885 -156.358 |
expression | 50.0250 | 12.497 | 4.003 | 0.001 | 24.037 76.013 |
Omnibus: | 2.627 | Durbin-Watson: | 2.102 |
Prob(Omnibus): | 0.269 | Jarque-Bera (JB): | 1.216 |
Skew: | 0.066 | Prob(JB): | 0.544 |
Kurtosis: | 1.881 | Cond. No. | 225. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.360 | 0.560 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.529 |
Model: | OLS | Adj. R-squared: | 0.401 |
Method: | Least Squares | F-statistic: | 4.124 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0346 |
Time: | 03:40:46 | Log-Likelihood: | -69.647 |
No. Observations: | 15 | AIC: | 147.3 |
Df Residuals: | 11 | BIC: | 150.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -250.1451 | 244.451 | -1.023 | 0.328 | -788.178 287.888 |
C(dose)[T.1] | 477.3386 | 351.101 | 1.360 | 0.201 | -295.429 1250.106 |
expression | 36.5515 | 28.106 | 1.300 | 0.220 | -25.310 98.413 |
expression:C(dose)[T.1] | -48.9589 | 39.855 | -1.228 | 0.245 | -136.679 38.761 |
Omnibus: | 2.854 | Durbin-Watson: | 1.012 |
Prob(Omnibus): | 0.240 | Jarque-Bera (JB): | 1.364 |
Skew: | -0.733 | Prob(JB): | 0.506 |
Kurtosis: | 3.187 | Cond. No. | 549. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.465 |
Model: | OLS | Adj. R-squared: | 0.376 |
Method: | Least Squares | F-statistic: | 5.211 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0235 |
Time: | 03:40:46 | Log-Likelihood: | -70.611 |
No. Observations: | 15 | AIC: | 147.2 |
Df Residuals: | 12 | BIC: | 149.3 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -38.5924 | 177.131 | -0.218 | 0.831 | -424.528 347.343 |
C(dose)[T.1] | 46.4741 | 16.159 | 2.876 | 0.014 | 11.266 81.683 |
expression | 12.2026 | 20.345 | 0.600 | 0.560 | -32.126 56.531 |
Omnibus: | 2.766 | Durbin-Watson: | 0.742 |
Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 2.022 |
Skew: | -0.860 | Prob(JB): | 0.364 |
Kurtosis: | 2.477 | Cond. No. | 205. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:40:46 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.096 |
Model: | OLS | Adj. R-squared: | 0.026 |
Method: | Least Squares | F-statistic: | 1.379 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.261 |
Time: | 03:40:46 | Log-Likelihood: | -74.544 |
No. Observations: | 15 | AIC: | 153.1 |
Df Residuals: | 13 | BIC: | 154.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -158.5598 | 214.968 | -0.738 | 0.474 | -622.969 305.850 |
expression | 28.6381 | 24.383 | 1.175 | 0.261 | -24.038 81.314 |
Omnibus: | 2.956 | Durbin-Watson: | 1.638 |
Prob(Omnibus): | 0.228 | Jarque-Bera (JB): | 1.353 |
Skew: | 0.362 | Prob(JB): | 0.509 |
Kurtosis: | 1.719 | Cond. No. | 199. |