AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.429 | 0.520 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.664 |
Model: | OLS | Adj. R-squared: | 0.611 |
Method: | Least Squares | F-statistic: | 12.52 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 9.50e-05 |
Time: | 03:58:19 | Log-Likelihood: | -100.56 |
No. Observations: | 23 | AIC: | 209.1 |
Df Residuals: | 19 | BIC: | 213.7 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 46.6482 | 170.771 | 0.273 | 0.788 | -310.779 404.075 |
C(dose)[T.1] | -117.5363 | 258.119 | -0.455 | 0.654 | -657.786 422.714 |
expression | 0.9008 | 20.335 | 0.044 | 0.965 | -41.661 43.463 |
expression:C(dose)[T.1] | 20.2185 | 30.623 | 0.660 | 0.517 | -43.876 84.313 |
Omnibus: | 0.431 | Durbin-Watson: | 1.974 |
Prob(Omnibus): | 0.806 | Jarque-Bera (JB): | 0.553 |
Skew: | 0.113 | Prob(JB): | 0.758 |
Kurtosis: | 2.275 | Cond. No. | 633. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.656 |
Model: | OLS | Adj. R-squared: | 0.622 |
Method: | Least Squares | F-statistic: | 19.11 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.29e-05 |
Time: | 03:58:19 | Log-Likelihood: | -100.82 |
No. Observations: | 23 | AIC: | 207.6 |
Df Residuals: | 20 | BIC: | 211.0 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -28.1750 | 125.933 | -0.224 | 0.825 | -290.867 234.517 |
C(dose)[T.1] | 52.7841 | 8.718 | 6.054 | 0.000 | 34.598 70.970 |
expression | 9.8163 | 14.988 | 0.655 | 0.520 | -21.449 41.082 |
Omnibus: | 0.161 | Durbin-Watson: | 2.038 |
Prob(Omnibus): | 0.923 | Jarque-Bera (JB): | 0.324 |
Skew: | 0.159 | Prob(JB): | 0.850 |
Kurtosis: | 2.513 | Cond. No. | 249. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:58:19 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.027 |
Model: | OLS | Adj. R-squared: | -0.020 |
Method: | Least Squares | F-statistic: | 0.5765 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.456 |
Time: | 03:58:19 | Log-Likelihood: | -112.79 |
No. Observations: | 23 | AIC: | 229.6 |
Df Residuals: | 21 | BIC: | 231.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -76.9274 | 206.426 | -0.373 | 0.713 | -506.214 352.359 |
expression | 18.6052 | 24.503 | 0.759 | 0.456 | -32.352 69.562 |
Omnibus: | 3.907 | Durbin-Watson: | 2.428 |
Prob(Omnibus): | 0.142 | Jarque-Bera (JB): | 1.655 |
Skew: | 0.272 | Prob(JB): | 0.437 |
Kurtosis: | 1.804 | Cond. No. | 248. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
2.234 | 0.161 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.539 |
Model: | OLS | Adj. R-squared: | 0.414 |
Method: | Least Squares | F-statistic: | 4.291 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0310 |
Time: | 03:58:19 | Log-Likelihood: | -69.489 |
No. Observations: | 15 | AIC: | 147.0 |
Df Residuals: | 11 | BIC: | 149.8 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 1166.6711 | 1505.488 | 0.775 | 0.455 | -2146.886 4480.229 |
C(dose)[T.1] | -421.5712 | 1584.153 | -0.266 | 0.795 | -3908.268 3065.126 |
expression | -126.9669 | 173.885 | -0.730 | 0.481 | -509.686 255.752 |
expression:C(dose)[T.1] | 55.8815 | 182.604 | 0.306 | 0.765 | -346.026 457.790 |
Omnibus: | 0.722 | Durbin-Watson: | 1.317 |
Prob(Omnibus): | 0.697 | Jarque-Bera (JB): | 0.717 |
Skew: | -0.375 | Prob(JB): | 0.699 |
Kurtosis: | 2.236 | Cond. No. | 2.98e+03 |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.535 |
Model: | OLS | Adj. R-squared: | 0.458 |
Method: | Least Squares | F-statistic: | 6.911 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0101 |
Time: | 03:58:19 | Log-Likelihood: | -69.553 |
No. Observations: | 15 | AIC: | 145.1 |
Df Residuals: | 12 | BIC: | 147.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 727.9607 | 442.047 | 1.647 | 0.126 | -235.176 1691.098 |
C(dose)[T.1] | 63.1903 | 17.219 | 3.670 | 0.003 | 25.672 100.708 |
expression | -76.2941 | 51.044 | -1.495 | 0.161 | -187.509 34.920 |
Omnibus: | 0.603 | Durbin-Watson: | 1.288 |
Prob(Omnibus): | 0.740 | Jarque-Bera (JB): | 0.632 |
Skew: | -0.360 | Prob(JB): | 0.729 |
Kurtosis: | 2.298 | Cond. No. | 545. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:58:19 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.014 |
Model: | OLS | Adj. R-squared: | -0.062 |
Method: | Least Squares | F-statistic: | 0.1816 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.677 |
Time: | 03:58:19 | Log-Likelihood: | -75.196 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.8 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -130.0509 | 525.076 | -0.248 | 0.808 | -1264.408 1004.307 |
expression | 25.5516 | 59.960 | 0.426 | 0.677 | -103.983 155.087 |
Omnibus: | 0.512 | Durbin-Watson: | 1.403 |
Prob(Omnibus): | 0.774 | Jarque-Bera (JB): | 0.546 |
Skew: | 0.043 | Prob(JB): | 0.761 |
Kurtosis: | 2.069 | Cond. No. | 462. |