AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.548 0.468 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.659
Model: OLS Adj. R-squared: 0.605
Method: Least Squares F-statistic: 12.25
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000109
Time: 04:18:07 Log-Likelihood: -100.73
No. Observations: 23 AIC: 209.5
Df Residuals: 19 BIC: 214.0
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -175.0032 332.190 -0.527 0.604 -870.284 520.277
C(dose)[T.1] 156.2713 539.821 0.289 0.775 -973.586 1286.129
expression 21.8784 31.702 0.690 0.498 -44.475 88.232
expression:C(dose)[T.1] -10.3796 50.060 -0.207 0.838 -115.156 94.397
Omnibus: 0.183 Durbin-Watson: 2.044
Prob(Omnibus): 0.913 Jarque-Bera (JB): 0.392
Skew: 0.056 Prob(JB): 0.822
Kurtosis: 2.370 Cond. No. 1.64e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.658
Model: OLS Adj. R-squared: 0.624
Method: Least Squares F-statistic: 19.27
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.16e-05
Time: 04:18:07 Log-Likelihood: -100.75
No. Observations: 23 AIC: 207.5
Df Residuals: 20 BIC: 210.9
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -131.3914 250.889 -0.524 0.606 -654.738 391.955
C(dose)[T.1] 44.3876 14.871 2.985 0.007 13.368 75.407
expression 17.7157 23.941 0.740 0.468 -32.224 67.655
Omnibus: 0.142 Durbin-Watson: 2.045
Prob(Omnibus): 0.931 Jarque-Bera (JB): 0.361
Skew: 0.043 Prob(JB): 0.835
Kurtosis: 2.393 Cond. No. 629.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:18:07 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.506
Model: OLS Adj. R-squared: 0.483
Method: Least Squares F-statistic: 21.53
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000141
Time: 04:18:07 Log-Likelihood: -104.99
No. Observations: 23 AIC: 214.0
Df Residuals: 21 BIC: 216.2
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -733.1063 175.248 -4.183 0.000 -1097.555 -368.657
expression 75.8358 16.344 4.640 0.000 41.847 109.824
Omnibus: 2.957 Durbin-Watson: 2.503
Prob(Omnibus): 0.228 Jarque-Bera (JB): 1.449
Skew: 0.256 Prob(JB): 0.485
Kurtosis: 1.882 Cond. No. 374.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
4.088 0.066 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.599
Model: OLS Adj. R-squared: 0.490
Method: Least Squares F-statistic: 5.479
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0150
Time: 04:18:07 Log-Likelihood: -68.445
No. Observations: 15 AIC: 144.9
Df Residuals: 11 BIC: 147.7
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -390.8909 366.435 -1.067 0.309 -1197.409 415.627
C(dose)[T.1] -268.0447 607.866 -0.441 0.668 -1605.949 1069.860
expression 43.9156 35.098 1.251 0.237 -33.334 121.165
expression:C(dose)[T.1] 31.0290 58.545 0.530 0.607 -97.827 159.885
Omnibus: 2.033 Durbin-Watson: 0.503
Prob(Omnibus): 0.362 Jarque-Bera (JB): 1.234
Skew: -0.420 Prob(JB): 0.540
Kurtosis: 1.873 Cond. No. 1.14e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.589
Model: OLS Adj. R-squared: 0.520
Method: Least Squares F-statistic: 8.593
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00483
Time: 04:18:07 Log-Likelihood: -68.634
No. Observations: 15 AIC: 143.3
Df Residuals: 12 BIC: 145.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -507.2751 284.425 -1.784 0.100 -1126.983 112.433
C(dose)[T.1] 54.0378 13.803 3.915 0.002 23.964 84.112
expression 55.0674 27.237 2.022 0.066 -4.276 114.411
Omnibus: 2.300 Durbin-Watson: 0.491
Prob(Omnibus): 0.317 Jarque-Bera (JB): 1.557
Skew: -0.590 Prob(JB): 0.459
Kurtosis: 1.951 Cond. No. 440.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:18:07 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.064
Model: OLS Adj. R-squared: -0.008
Method: Least Squares F-statistic: 0.8842
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.364
Time: 04:18:07 Log-Likelihood: -74.807
No. Observations: 15 AIC: 153.6
Df Residuals: 13 BIC: 155.0
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -286.2684 404.168 -0.708 0.491 -1159.419 586.883
expression 36.5692 38.890 0.940 0.364 -47.448 120.586
Omnibus: 2.217 Durbin-Watson: 1.816
Prob(Omnibus): 0.330 Jarque-Bera (JB): 1.059
Skew: 0.207 Prob(JB): 0.589
Kurtosis: 1.766 Cond. No. 431.