AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
1.045 0.319 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.682
Model: OLS Adj. R-squared: 0.631
Method: Least Squares F-statistic: 13.56
Date: Thu, 21 Nov 2024 Prob (F-statistic): 5.78e-05
Time: 05:15:39 Log-Likelihood: -99.942
No. Observations: 23 AIC: 207.9
Df Residuals: 19 BIC: 212.4
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 216.8318 116.787 1.857 0.079 -27.606 461.270
C(dose)[T.1] -111.9866 175.612 -0.638 0.531 -479.546 255.572
expression -20.5543 14.742 -1.394 0.179 -51.409 10.301
expression:C(dose)[T.1] 20.8899 21.965 0.951 0.354 -25.084 66.864
Omnibus: 0.180 Durbin-Watson: 1.590
Prob(Omnibus): 0.914 Jarque-Bera (JB): 0.390
Skew: -0.061 Prob(JB): 0.823
Kurtosis: 2.374 Cond. No. 422.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.666
Model: OLS Adj. R-squared: 0.633
Method: Least Squares F-statistic: 19.98
Date: Thu, 21 Nov 2024 Prob (F-statistic): 1.70e-05
Time: 05:15:39 Log-Likelihood: -100.48
No. Observations: 23 AIC: 207.0
Df Residuals: 20 BIC: 210.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.3839 86.461 1.647 0.115 -37.971 322.739
C(dose)[T.1] 54.8227 8.672 6.322 0.000 36.733 72.912
expression -11.1447 10.902 -1.022 0.319 -33.887 11.597
Omnibus: 1.170 Durbin-Watson: 1.838
Prob(Omnibus): 0.557 Jarque-Bera (JB): 0.859
Skew: 0.114 Prob(JB): 0.651
Kurtosis: 2.081 Cond. No. 165.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 05:15:39 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.000
Model: OLS Adj. R-squared: -0.048
Method: Least Squares F-statistic: 0.0004984
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.982
Time: 05:15:39 Log-Likelihood: -113.10
No. Observations: 23 AIC: 230.2
Df Residuals: 21 BIC: 232.5
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 76.4834 145.038 0.527 0.603 -225.140 378.107
expression 0.4055 18.163 0.022 0.982 -37.366 38.177
Omnibus: 3.321 Durbin-Watson: 2.486
Prob(Omnibus): 0.190 Jarque-Bera (JB): 1.567
Skew: 0.285 Prob(JB): 0.457
Kurtosis: 1.856 Cond. No. 163.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.043 0.840 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.482
Model: OLS Adj. R-squared: 0.341
Method: Least Squares F-statistic: 3.410
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0567
Time: 05:15:39 Log-Likelihood: -70.368
No. Observations: 15 AIC: 148.7
Df Residuals: 11 BIC: 151.6
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 106.9829 77.190 1.386 0.193 -62.912 276.878
C(dose)[T.1] -98.1270 181.096 -0.542 0.599 -496.718 300.464
expression -5.7593 11.111 -0.518 0.614 -30.214 18.695
expression:C(dose)[T.1] 22.0964 27.156 0.814 0.433 -37.674 81.867
Omnibus: 6.123 Durbin-Watson: 0.672
Prob(Omnibus): 0.047 Jarque-Bera (JB): 3.483
Skew: -1.148 Prob(JB): 0.175
Kurtosis: 3.546 Cond. No. 184.

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.451
Model: OLS Adj. R-squared: 0.359
Method: Least Squares F-statistic: 4.923
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0275
Time: 05:15:39 Log-Likelihood: -70.806
No. Observations: 15 AIC: 147.6
Df Residuals: 12 BIC: 149.7
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 81.5796 69.594 1.172 0.264 -70.052 233.211
C(dose)[T.1] 48.6374 15.944 3.050 0.010 13.898 83.377
expression -2.0605 9.995 -0.206 0.840 -23.837 19.716
Omnibus: 2.500 Durbin-Watson: 0.784
Prob(Omnibus): 0.287 Jarque-Bera (JB): 1.779
Skew: -0.812 Prob(JB): 0.411
Kurtosis: 2.543 Cond. No. 61.7

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 05:15:39 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.025
Model: OLS Adj. R-squared: -0.050
Method: Least Squares F-statistic: 0.3303
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.575
Time: 05:15:39 Log-Likelihood: -75.112
No. Observations: 15 AIC: 154.2
Df Residuals: 13 BIC: 155.6
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 142.3826 85.361 1.668 0.119 -42.028 326.793
expression -7.2460 12.608 -0.575 0.575 -34.485 19.993
Omnibus: 0.838 Durbin-Watson: 1.581
Prob(Omnibus): 0.658 Jarque-Bera (JB): 0.686
Skew: 0.155 Prob(JB): 0.710
Kurtosis: 1.999 Cond. No. 58.8