AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.304 | 0.587 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.600 |
Method: | Least Squares | F-statistic: | 11.99 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000124 |
Time: | 03:32:48 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 209.8 |
Df Residuals: | 19 | BIC: | 214.3 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 101.6338 | 113.094 | 0.899 | 0.380 | -135.074 338.341 |
C(dose)[T.1] | 43.0175 | 157.333 | 0.273 | 0.787 | -286.284 372.319 |
expression | -6.4641 | 15.392 | -0.420 | 0.679 | -38.679 25.751 |
expression:C(dose)[T.1] | 1.1278 | 21.988 | 0.051 | 0.960 | -44.894 47.150 |
Omnibus: | 0.220 | Durbin-Watson: | 1.734 |
Prob(Omnibus): | 0.896 | Jarque-Bera (JB): | 0.419 |
Skew: | 0.076 | Prob(JB): | 0.811 |
Kurtosis: | 2.356 | Cond. No. | 333. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.654 |
Model: | OLS | Adj. R-squared: | 0.620 |
Method: | Least Squares | F-statistic: | 18.93 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.44e-05 |
Time: | 03:32:48 | Log-Likelihood: | -100.89 |
No. Observations: | 23 | AIC: | 207.8 |
Df Residuals: | 20 | BIC: | 211.2 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 97.5795 | 78.838 | 1.238 | 0.230 | -66.874 262.033 |
C(dose)[T.1] | 51.0711 | 9.624 | 5.307 | 0.000 | 30.995 71.147 |
expression | -5.9115 | 10.714 | -0.552 | 0.587 | -28.261 16.438 |
Omnibus: | 0.196 | Durbin-Watson: | 1.745 |
Prob(Omnibus): | 0.907 | Jarque-Bera (JB): | 0.401 |
Skew: | 0.078 | Prob(JB): | 0.818 |
Kurtosis: | 2.372 | Cond. No. | 133. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:32:48 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.168 |
Model: | OLS | Adj. R-squared: | 0.128 |
Method: | Least Squares | F-statistic: | 4.229 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0524 |
Time: | 03:32:48 | Log-Likelihood: | -110.99 |
No. Observations: | 23 | AIC: | 226.0 |
Df Residuals: | 21 | BIC: | 228.3 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 295.5662 | 105.174 | 2.810 | 0.010 | 76.845 514.287 |
expression | -30.1743 | 14.674 | -2.056 | 0.052 | -60.690 0.342 |
Omnibus: | 0.768 | Durbin-Watson: | 2.151 |
Prob(Omnibus): | 0.681 | Jarque-Bera (JB): | 0.736 |
Skew: | 0.374 | Prob(JB): | 0.692 |
Kurtosis: | 2.544 | Cond. No. | 117. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.111 | 0.745 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.462 |
Model: | OLS | Adj. R-squared: | 0.315 |
Method: | Least Squares | F-statistic: | 3.146 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0689 |
Time: | 03:32:48 | Log-Likelihood: | -70.654 |
No. Observations: | 15 | AIC: | 149.3 |
Df Residuals: | 11 | BIC: | 152.1 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -41.9439 | 214.576 | -0.195 | 0.849 | -514.223 430.335 |
C(dose)[T.1] | 173.9900 | 310.935 | 0.560 | 0.587 | -510.374 858.354 |
expression | 14.5585 | 28.518 | 0.510 | 0.620 | -48.210 77.327 |
expression:C(dose)[T.1] | -16.6014 | 41.228 | -0.403 | 0.695 | -107.344 74.141 |
Omnibus: | 2.763 | Durbin-Watson: | 0.783 |
Prob(Omnibus): | 0.251 | Jarque-Bera (JB): | 1.930 |
Skew: | -0.854 | Prob(JB): | 0.381 |
Kurtosis: | 2.591 | Cond. No. | 388. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.454 |
Model: | OLS | Adj. R-squared: | 0.363 |
Method: | Least Squares | F-statistic: | 4.985 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0265 |
Time: | 03:32:48 | Log-Likelihood: | -70.764 |
No. Observations: | 15 | AIC: | 147.5 |
Df Residuals: | 12 | BIC: | 149.7 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 17.7318 | 149.661 | 0.118 | 0.908 | -308.351 343.815 |
C(dose)[T.1] | 48.9569 | 15.684 | 3.121 | 0.009 | 14.785 83.129 |
expression | 6.6151 | 19.863 | 0.333 | 0.745 | -36.663 49.893 |
Omnibus: | 3.831 | Durbin-Watson: | 0.781 |
Prob(Omnibus): | 0.147 | Jarque-Bera (JB): | 2.315 |
Skew: | -0.962 | Prob(JB): | 0.314 |
Kurtosis: | 2.979 | Cond. No. | 147. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:32:48 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.010 |
Model: | OLS | Adj. R-squared: | -0.066 |
Method: | Least Squares | F-statistic: | 0.1358 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.718 |
Time: | 03:32:48 | Log-Likelihood: | -75.222 |
No. Observations: | 15 | AIC: | 154.4 |
Df Residuals: | 13 | BIC: | 155.9 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 22.4292 | 193.544 | 0.116 | 0.910 | -395.698 440.557 |
expression | 9.4581 | 25.661 | 0.369 | 0.718 | -45.980 64.896 |
Omnibus: | 0.549 | Durbin-Watson: | 1.609 |
Prob(Omnibus): | 0.760 | Jarque-Bera (JB): | 0.559 |
Skew: | 0.018 | Prob(JB): | 0.756 |
Kurtosis: | 2.055 | Cond. No. | 147. |