AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots
CP73
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
0.147 | 0.705 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.660 |
Model: | OLS | Adj. R-squared: | 0.607 |
Method: | Least Squares | F-statistic: | 12.32 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.000105 |
Time: | 03:31:08 | Log-Likelihood: | -100.68 |
No. Observations: | 23 | AIC: | 209.4 |
Df Residuals: | 19 | BIC: | 213.9 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 19.4663 | 133.504 | 0.146 | 0.886 | -259.962 298.894 |
C(dose)[T.1] | 182.6360 | 183.322 | 0.996 | 0.332 | -201.062 566.334 |
expression | 5.0205 | 19.272 | 0.261 | 0.797 | -35.316 45.357 |
expression:C(dose)[T.1] | -18.3727 | 26.179 | -0.702 | 0.491 | -73.165 36.420 |
Omnibus: | 1.719 | Durbin-Watson: | 1.970 |
Prob(Omnibus): | 0.423 | Jarque-Bera (JB): | 1.157 |
Skew: | 0.269 | Prob(JB): | 0.561 |
Kurtosis: | 2.042 | Cond. No. | 392. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.652 |
Model: | OLS | Adj. R-squared: | 0.617 |
Method: | Least Squares | F-statistic: | 18.70 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 2.63e-05 |
Time: | 03:31:08 | Log-Likelihood: | -100.98 |
No. Observations: | 23 | AIC: | 208.0 |
Df Residuals: | 20 | BIC: | 211.4 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 88.3705 | 89.312 | 0.989 | 0.334 | -97.931 274.672 |
C(dose)[T.1] | 54.1350 | 8.982 | 6.027 | 0.000 | 35.398 72.872 |
expression | -4.9367 | 12.877 | -0.383 | 0.705 | -31.797 21.924 |
Omnibus: | 0.623 | Durbin-Watson: | 1.855 |
Prob(Omnibus): | 0.732 | Jarque-Bera (JB): | 0.652 |
Skew: | 0.123 | Prob(JB): | 0.722 |
Kurtosis: | 2.213 | Cond. No. | 147. |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.649 |
Model: | OLS | Adj. R-squared: | 0.632 |
Method: | Least Squares | F-statistic: | 38.84 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 3.51e-06 |
Time: | 03:31:08 | Log-Likelihood: | -101.06 |
No. Observations: | 23 | AIC: | 206.1 |
Df Residuals: | 21 | BIC: | 208.4 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 54.2083 | 5.919 | 9.159 | 0.000 | 41.900 66.517 |
C(dose)[T.1] | 53.3371 | 8.558 | 6.232 | 0.000 | 35.539 71.135 |
Omnibus: | 0.322 | Durbin-Watson: | 1.888 |
Prob(Omnibus): | 0.851 | Jarque-Bera (JB): | 0.485 |
Skew: | 0.060 | Prob(JB): | 0.785 |
Kurtosis: | 2.299 | Cond. No. | 2.57 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.019 |
Model: | OLS | Adj. R-squared: | -0.028 |
Method: | Least Squares | F-statistic: | 0.4043 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.532 |
Time: | 03:31:08 | Log-Likelihood: | -112.89 |
No. Observations: | 23 | AIC: | 229.8 |
Df Residuals: | 21 | BIC: | 232.0 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -11.5592 | 143.724 | -0.080 | 0.937 | -310.450 287.331 |
expression | 13.0444 | 20.514 | 0.636 | 0.532 | -29.617 55.706 |
Omnibus: | 4.097 | Durbin-Watson: | 2.466 |
Prob(Omnibus): | 0.129 | Jarque-Bera (JB): | 1.731 |
Skew: | 0.298 | Prob(JB): | 0.421 |
Kurtosis: | 1.795 | Cond. No. | 144. |
CP101
Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)
F-statistic | p-value | df difference |
1.714 | 0.215 | 1.0 |
Model:
AIM ~ expression + C(dose) + expression:C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.546 |
Model: | OLS | Adj. R-squared: | 0.423 |
Method: | Least Squares | F-statistic: | 4.417 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0286 |
Time: | 03:31:08 | Log-Likelihood: | -69.371 |
No. Observations: | 15 | AIC: | 146.7 |
Df Residuals: | 11 | BIC: | 149.6 |
Df Model: | 3 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | -34.7384 | 244.875 | -0.142 | 0.890 | -573.704 504.227 |
C(dose)[T.1] | 261.3537 | 256.093 | 1.021 | 0.329 | -302.302 825.010 |
expression | 16.5119 | 39.537 | 0.418 | 0.684 | -70.508 103.532 |
expression:C(dose)[T.1] | -34.5429 | 41.369 | -0.835 | 0.421 | -125.595 56.509 |
Omnibus: | 4.443 | Durbin-Watson: | 1.353 |
Prob(Omnibus): | 0.108 | Jarque-Bera (JB): | 2.122 |
Skew: | -0.873 | Prob(JB): | 0.346 |
Kurtosis: | 3.589 | Cond. No. | 346. |
Model:
AIM ~ expression + C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.518 |
Model: | OLS | Adj. R-squared: | 0.437 |
Method: | Least Squares | F-statistic: | 6.439 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.0126 |
Time: | 03:31:08 | Log-Likelihood: | -69.832 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 12 | BIC: | 147.8 |
Df Model: | 2 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 160.4820 | 71.892 | 2.232 | 0.045 | 3.843 317.120 |
C(dose)[T.1] | 47.8820 | 14.758 | 3.245 | 0.007 | 15.728 80.036 |
expression | -15.0390 | 11.488 | -1.309 | 0.215 | -40.070 9.992 |
Omnibus: | 4.100 | Durbin-Watson: | 1.081 |
Prob(Omnibus): | 0.129 | Jarque-Bera (JB): | 1.969 |
Skew: | -0.855 | Prob(JB): | 0.374 |
Kurtosis: | 3.478 | Cond. No. | 62.2 |
Model:
AIM ~ C(dose)
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.449 |
Model: | OLS | Adj. R-squared: | 0.406 |
Method: | Least Squares | F-statistic: | 10.58 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.00629 |
Time: | 03:31:08 | Log-Likelihood: | -70.833 |
No. Observations: | 15 | AIC: | 145.7 |
Df Residuals: | 13 | BIC: | 147.1 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 67.4286 | 11.044 | 6.106 | 0.000 | 43.570 91.287 |
C(dose)[T.1] | 49.1964 | 15.122 | 3.253 | 0.006 | 16.527 81.866 |
Omnibus: | 2.713 | Durbin-Watson: | 0.810 |
Prob(Omnibus): | 0.258 | Jarque-Bera (JB): | 1.868 |
Skew: | -0.843 | Prob(JB): | 0.393 |
Kurtosis: | 2.619 | Cond. No. | 2.70 |
Model:
AIM ~ expression
OLS Regression Results
Dep. Variable: | AIM | R-squared: | 0.095 |
Model: | OLS | Adj. R-squared: | 0.025 |
Method: | Least Squares | F-statistic: | 1.357 |
Date: | Thu, 21 Nov 2024 | Prob (F-statistic): | 0.265 |
Time: | 03:31:08 | Log-Likelihood: | -74.555 |
No. Observations: | 15 | AIC: | 153.1 |
Df Residuals: | 13 | BIC: | 154.5 |
Df Model: | 1 | | |
| coef | std err | t | P>|t| | [95.0% Conf. Int.] |
Intercept | 201.5928 | 93.155 | 2.164 | 0.050 | 0.343 402.843 |
expression | -17.5751 | 15.088 | -1.165 | 0.265 | -50.170 15.020 |
Omnibus: | 0.069 | Durbin-Watson: | 1.852 |
Prob(Omnibus): | 0.966 | Jarque-Bera (JB): | 0.227 |
Skew: | -0.129 | Prob(JB): | 0.893 |
Kurtosis: | 2.455 | Cond. No. | 61.0 |