AIM Score vs. Gene Expression
Full X range:
Auto X range:
Group Comparisons: Boxplots

CP73

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.071 0.793 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.657
Model: OLS Adj. R-squared: 0.603
Method: Least Squares F-statistic: 12.12
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.000116
Time: 04:44:16 Log-Likelihood: -100.81
No. Observations: 23 AIC: 209.6
Df Residuals: 19 BIC: 214.2
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -4.3890 452.481 -0.010 0.992 -951.443 942.665
C(dose)[T.1] 531.0075 796.298 0.667 0.513 -1135.663 2197.678
expression 4.7801 36.908 0.130 0.898 -72.470 82.030
expression:C(dose)[T.1] -38.3344 64.144 -0.598 0.557 -172.589 95.921
Omnibus: 0.058 Durbin-Watson: 1.787
Prob(Omnibus): 0.972 Jarque-Bera (JB): 0.279
Skew: -0.024 Prob(JB): 0.870
Kurtosis: 2.462 Cond. No. 2.70e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.650
Model: OLS Adj. R-squared: 0.615
Method: Least Squares F-statistic: 18.60
Date: Thu, 21 Nov 2024 Prob (F-statistic): 2.74e-05
Time: 04:44:16 Log-Likelihood: -101.02
No. Observations: 23 AIC: 208.0
Df Residuals: 20 BIC: 211.5
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 151.1931 364.093 0.415 0.682 -608.293 910.679
C(dose)[T.1] 55.1641 11.121 4.960 0.000 31.967 78.362
expression -7.9116 29.697 -0.266 0.793 -69.859 54.036
Omnibus: 0.449 Durbin-Watson: 1.856
Prob(Omnibus): 0.799 Jarque-Bera (JB): 0.551
Skew: 0.018 Prob(JB): 0.759
Kurtosis: 2.242 Cond. No. 1.04e+03

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.649
Model: OLS Adj. R-squared: 0.632
Method: Least Squares F-statistic: 38.84
Date: Thu, 21 Nov 2024 Prob (F-statistic): 3.51e-06
Time: 04:44:16 Log-Likelihood: -101.06
No. Observations: 23 AIC: 206.1
Df Residuals: 21 BIC: 208.4
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 54.2083 5.919 9.159 0.000 41.900 66.517
C(dose)[T.1] 53.3371 8.558 6.232 0.000 35.539 71.135
Omnibus: 0.322 Durbin-Watson: 1.888
Prob(Omnibus): 0.851 Jarque-Bera (JB): 0.485
Skew: 0.060 Prob(JB): 0.785
Kurtosis: 2.299 Cond. No. 2.57

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.220
Model: OLS Adj. R-squared: 0.183
Method: Least Squares F-statistic: 5.925
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0239
Time: 04:44:16 Log-Likelihood: -110.25
No. Observations: 23 AIC: 224.5
Df Residuals: 21 BIC: 226.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -946.0870 421.481 -2.245 0.036 -1822.605 -69.569
expression 82.9340 34.072 2.434 0.024 12.078 153.790
Omnibus: 1.197 Durbin-Watson: 2.443
Prob(Omnibus): 0.550 Jarque-Bera (JB): 1.117
Skew: 0.434 Prob(JB): 0.572
Kurtosis: 2.357 Cond. No. 823.

CP101

Model Comparison: AIM ~ expression + C(dose) vs AIM ~ C(dose)

F-statistic p-value df difference
0.313 0.586 1.0

Model:
AIM ~ expression + C(dose) + expression:C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.540
Model: OLS Adj. R-squared: 0.414
Method: Least Squares F-statistic: 4.299
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0309
Time: 04:44:16 Log-Likelihood: -69.481
No. Observations: 15 AIC: 147.0
Df Residuals: 11 BIC: 149.8
Df Model: 3
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 592.3935 403.329 1.469 0.170 -295.328 1480.115
C(dose)[T.1] -826.7067 648.544 -1.275 0.229 -2254.143 600.729
expression -46.4801 35.697 -1.302 0.220 -125.049 32.089
expression:C(dose)[T.1] 77.0376 56.825 1.356 0.202 -48.034 202.109
Omnibus: 0.935 Durbin-Watson: 1.204
Prob(Omnibus): 0.627 Jarque-Bera (JB): 0.752
Skew: -0.484 Prob(JB): 0.686
Kurtosis: 2.483 Cond. No. 1.26e+03

Model:
AIM ~ expression + C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.463
Model: OLS Adj. R-squared: 0.373
Method: Least Squares F-statistic: 5.169
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.0240
Time: 04:44:16 Log-Likelihood: -70.640
No. Observations: 15 AIC: 147.3
Df Residuals: 12 BIC: 149.4
Df Model: 2
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 249.0309 324.663 0.767 0.458 -458.348 956.410
C(dose)[T.1] 52.2533 16.470 3.173 0.008 16.368 88.139
expression -16.0790 28.728 -0.560 0.586 -78.672 46.514
Omnibus: 4.224 Durbin-Watson: 0.793
Prob(Omnibus): 0.121 Jarque-Bera (JB): 2.565
Skew: -1.013 Prob(JB): 0.277
Kurtosis: 3.025 Cond. No. 482.

Model:
AIM ~ C(dose)

OLS Regression Results
Dep. Variable: AIM R-squared: 0.449
Model: OLS Adj. R-squared: 0.406
Method: Least Squares F-statistic: 10.58
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.00629
Time: 04:44:16 Log-Likelihood: -70.833
No. Observations: 15 AIC: 145.7
Df Residuals: 13 BIC: 147.1
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept 67.4286 11.044 6.106 0.000 43.570 91.287
C(dose)[T.1] 49.1964 15.122 3.253 0.006 16.527 81.866
Omnibus: 2.713 Durbin-Watson: 0.810
Prob(Omnibus): 0.258 Jarque-Bera (JB): 1.868
Skew: -0.843 Prob(JB): 0.393
Kurtosis: 2.619 Cond. No. 2.70

Model:
AIM ~ expression

OLS Regression Results
Dep. Variable: AIM R-squared: 0.012
Model: OLS Adj. R-squared: -0.064
Method: Least Squares F-statistic: 0.1605
Date: Thu, 21 Nov 2024 Prob (F-statistic): 0.695
Time: 04:44:16 Log-Likelihood: -75.208
No. Observations: 15 AIC: 154.4
Df Residuals: 13 BIC: 155.8
Df Model: 1
coef std err t P>|t| [95.0% Conf. Int.]
Intercept -67.5276 402.507 -0.168 0.869 -937.091 802.036
expression 14.1451 35.310 0.401 0.695 -62.137 90.427
Omnibus: 0.150 Durbin-Watson: 1.503
Prob(Omnibus): 0.928 Jarque-Bera (JB): 0.362
Skew: -0.060 Prob(JB): 0.834
Kurtosis: 2.248 Cond. No. 458.